Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isopropyl alcohol dehydration

Effect of Nature of Zeolite upon Alcohol Dehydration. - The chemical composition of the zeolite can have a profound influence upon activity and selectivity for alcohol dehydration. Sarma and Ravindram claimed that isopropyl alcohol dehydrated over molecular sieves in the order of activity 10X> 5A> 13X>3A. If pore size is the dominant factor then 13X should be the most active but the chemical composition differs and this factor must be of importance. [Pg.162]

Luyben W. L., Plantwide control of an isopropyl alcohol dehydration process, AIChE J.,... [Pg.9]

Arifin S. and I. L. Chien, Combined pieconcentrator/recovery column design for isopropyl alcohol dehydration process, Ind. Engng. Chem. Res., 46, 2535 -2543 (2007). [Pg.9]

Etherification. Isopropyl alcohol can be dehydrated ia either the Hquid phase over acidic catalysts, eg, sulfuric acid, or ia the vapor phase over acidic aluminas to give diisopropyl ether (DIPE) and propylene (qv). [Pg.106]

Amination. Isopropyl alcohol can be aminated by either ammonolysis ia the presence of dehydration catalysts or reductive ammonolysis usiag hydrogeaatioa catalysts. Either method produces two amines isopropylamine [75-31-0] and diisopropylamine [108-18-9]. Virtually no trisubstituted amine, ie, triisopropyl amine [122-20-3], is produced. The ratio of mono- to diisopropylamine produced depends on the molar ratio of isopropyl alcohol and ammonia [7664-41-7] employed. Molar ratios of ammonia and hydrogen to alcohol range from 2 1—5 1 (35,36). [Pg.106]

Anhydrous stannous chloride, a water-soluble white soHd, is the most economical source of stannous tin and is especially important in redox and plating reactions. Preparation of the anhydrous salt may be by direct reaction of chlorine and molten tin, heating tin in hydrogen chloride gas, or reducing stannic chloride solution with tin metal, followed by dehydration. It is soluble in a number of organic solvents (g/100 g solvent at 23°C) acetone 42.7, ethyl alcohol 54.4, methyl isobutyl carbinol 10.45, isopropyl alcohol 9.61, methyl ethyl ketone 9.43 isoamyl acetate 3.76, diethyl ether 0.49, and mineral spirits 0.03 it is insoluble in petroleum naphtha and xylene (2). [Pg.64]

Isopropyl Ether. Isopropyl ether is manufactured by the dehydration of isopropyl alcohol with sulfuric acid. It is obtained in large quantities as a by-product in the manufacture of isopropyl alcohol from propylene by the sulfuric acid process, very similar to the production of ethyl ether from ethylene. Isopropyl ether is of moderate importance as an industrial solvent, since its boiling point Hes between that of ethyl ether and acetone. Isopropyl ether very readily forms hazardous peroxides and hydroperoxides, much more so than other ethers. However, this tendency can be controlled with commercial antioxidant additives. Therefore, it is also being promoted as another possible ether to be used in gasoline (33). [Pg.429]

A similar difference in the adsorption coefficients of the starting reactant of branched reactions was also found in the parallel dehydration and dehydrogenation of isopropyl alcohol on some oxide catalyst (123) here, of course, the chemical nature of both branches is clearly different. It is of interest, however, to note that for the series of catalysts with varying... [Pg.47]

Ratios of Rate Constants and of Adsorption Coefficients in Parallel Dehydrogenation (1) and Dehydration (2) of Isopropyl Alcohol on Some Oxide Catalysts (123)... [Pg.47]

In this Section, we consider examples of application of semiconductor sensors in investigation of heterogeneous catalytic reactions of dehydration of isopropyl alcohol and dissociation of hydrosine on zinc oxide. [Pg.234]

Figure 4.8. displays oscillograms of evolution of the electric conductivity of the ZnO film in the process of catalytic dehydration of isopropyl alcohol at various temperatures of the catalyzer and equal portions of alcohol (5-10-2 Torr) admitted into the reaction cell. Experimental curves 1-4 are bell-shaped. We suppose that this fact is associated with two circumstances. On one hand, alcohol vapors dissociate on the oxide film producing hydrogen atoms. The jump in electric conductivity is caused by chemisorption of these hydrogen atoms on the film which plays a part of the sensor in this case. Chi the other hand, the drop in electric conductivity is caused by complete dissociation of the admitted portion of alcohol ( depletion of the source of hydrogen atoms) and by... [Pg.235]

Several reagents reduce aldehydes preferentially to ketones in mixtures of both. Very high selectivity was found in reductions using dehydrated aluminum oxide soaked with isopropyl alcohol and especially diisopropylcarbinol [755], or silica gel and tributylstamane [756]. The best selectivity was achieved with lithium trialkoxyalumimm hydrides at —78°. In the system hexanal/ cyclohexanone the ratio of primary to secondary alcohol was 87 13 at 0° and 91.5 8.5 at —78° with lithium tris(/er/-butoxy)aluminum hydride [752], and 93.6 6.4 at 0° and 99.6 0.4 at —78° with lithium tris(3-ethyl-3-pentyl-oxy)aluminum hydride [752],... [Pg.97]

Although acetone is used widely as an industrial solvent, nevertheless it has become the by-product of the acetone-butanol fermentation and there is always the fear of overproduction. There is thus a need for an extension of the industrial utilization of acetone. A possibility in this direction may be in its conversion into pinacol, the preparation of which has recently been improved by McHenry, Drum and O Connor. It is obtained together with isopropyl alcohol by electrolytic reduction of acetone under controlled conditions. Pinacol (LXVI) may be dehydrated to 2,3-dimethylbutadiene which can be converted into a synthetic rubber, or converted through pinacolone (LXVII) into neohexane... [Pg.323]

Extrusion at high temperature into a dehydrating liquid (isopropyl alcohol) syringe-extrusion into a calcium chloride solution... [Pg.54]

Eucken (88,89) and Wicke (90) have tried to explain the dehydrogenation and dehydration of isopropyl alcohol by an electron interchange between the alcohol and the zinc oxide alumina catalysts used for these conversions. We shall modify the mechanism proposed by Eucken and Wicke, following the theory of chemisorption. Contrary to these authors, we do not believe that the positions of the zinc and oxygen ions on the surface of the zinc oxide catalysts have any appreciable influence upon... [Pg.250]

A dilute solution of ethanol is obtained, which can be concentrated by distillation to a constant-boiling point mixture that contains 95.6% ethanol by weight. Dehydration of the remaining few percent of water to give absolute alcohol is achieved either by chemical means or by distillation with benzene, which results in preferential separation of the water. Ethanol also is made in large quantities by fermentation, but this route is not competitive for industrial uses with the hydration of ethene. Isopropyl alcohol and tert-butyl alcohol also are manufactured by hydration of the corresponding alkenes. [Pg.607]

Major markets as solvents and intermediates have made the ketones important commercial products lor many years. Acetone and mcthylethyl ketone have had the most impact on the chemical industry Acetone Is used s an intermediate In methyl isobutyl ketone, methyl methacrylate, diucelonc alcohol. ketone. hisphenol-A. phiwnc. and mesityl oxide Acetone is largely produced by dehydration of isopropyl alcohol In the production of phenol from cumene, acetone is produced as a by-product This mute to acetone has tended to control its price. [Pg.35]

Instead of a steam bath or a water bath, an electrically heated oil bath is suitable. This permits easy regulation of the rate of distillation. However, the temperature of the bath should not exceed 95-100° when isopropyl alcohol is the solvent if possible dehydration of a sensitive alcohol is to be avoided. For this same reason, a burner, hot plate, or sand bath is not recommended for heating. Especially at the end of the reduction, superheating of the concentrated alkoxide solution may bring about dehydration or other decomposition of the product. [Pg.197]

A solution of 8.2 g. (0.040 mole) of purified aluminum isopropoxide and 2.75 g. (0.011 mole) of 4-keto-l,2,3,4-tetrahydrochrysene in 25 cc. of dry toluene is refluxed for four hours, in an oil bath. After the solution has cooled slightly, 25 cc. of dry isopropyl alcohol is added to facilitate removal of acetone, the water is removed from the reflux condenser, and a water condenser set for downward distillation is attached to the top by means of a short bent tube (a Hahn partial condenser with a 1-cm. layer of isobutyl alcohol in the inner condensing tube may be used). The mixture is heated at such a rate that slow distillation occurs (2 to 5 drops per minute, the volume of solution should be maintained by further addition of solvent as needed). When the test for acetone is completely negative, f the toluene solution is cooled and the aluminum salt is decomposed with cold 10% sulfuric acid (from 5 cc. of concentrated sulfuric acid and 80 cc. of water). The product is separated with the toluene, and the solution is washed with dilute aqueous ammonia and water, and then evaporated at room temperature under a stream of air (solutions of secondary alcohols which are susceptible to dehydration should be evaporated at room temperature a stream of air should not be used with carbinols boiling below 200°). There is obtained 2.10 g. (76%) of colorless 4-hydroxy-l, 2,3,4-tetrahydrochrysene melting at 156-158°. Two recrystallizations from a mixture of benzene and petroleum ether bring the melting point to 160-162°. [Pg.204]


See other pages where Isopropyl alcohol dehydration is mentioned: [Pg.144]    [Pg.149]    [Pg.149]    [Pg.184]    [Pg.345]    [Pg.176]    [Pg.339]    [Pg.339]    [Pg.144]    [Pg.149]    [Pg.149]    [Pg.184]    [Pg.345]    [Pg.176]    [Pg.339]    [Pg.339]    [Pg.155]    [Pg.105]    [Pg.108]    [Pg.428]    [Pg.47]    [Pg.234]    [Pg.236]    [Pg.102]    [Pg.217]    [Pg.141]    [Pg.316]    [Pg.251]    [Pg.890]    [Pg.428]    [Pg.402]    [Pg.195]   
See also in sourсe #XX -- [ Pg.597 ]




SEARCH



Alcohol, Dehydrated

Alcohols dehydration

Isopropyl alcohol

© 2024 chempedia.info