Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Being Promoted

Apparent non-RRKM behaviour occurs when the molecule is excited non-randomly and there is an initial non-RRKM decomposition before IVR fomis a microcanonical ensemble (see section A3.12.2). Reaction patliways, which have non-competitive RRKM rates, may be promoted in this way. Classical trajectory simulations were used in early studies of apparent non-RRKM dynamics [113.114]. [Pg.1035]

Although benzenesulphonyl chloride has for simplicity been used in the above discussion, tolucne-/>- sulphonyl chloride, CHaCeH SO Cl, is more frequently used in the laboratory, owing to its much lower cost, the latter being due in turn to the fact that toluene-p-sulphonyl chloride is a by-product in the commercial preparation of saccharin. Toluene-p sulphonyl chloride is a crystalline substance, of m.p. 68° the finely powdered chloride will, however, usually react readily with amines in the Schotten-Baumann reaction it does not react so readily with alcohols, but the reaction may be promoted considerably by first dissolving the chloride in some inert water-soluble solvent such as acetone. [Pg.249]

In the case of thickeners, the process of compaction of the flocculated material is important. The floes settle to the bottom and gradually coalesce under the weight of the material on top of them. As the bed of flocculated material compacts, water is released. Usually the bed is slowly stirred with a rotating rake to release trapped water. The concentrated slurry, called the underflow, is pumped out the bottom. Compaction can often be promoted by mixing coarse material with the substrate because it creates channels for the upward flow of water as it falls through the bed of flocculated material. The amount of compaction is critical in terms of calculating the size of the thickener needed for a particular operation. The process of compaction has been extensively reviewed in the Hterature (41,42). [Pg.35]

Most Type A processes might be classified as chemical processes, whereas most Type B processes are classified as mechanical processes. Representative examples of both types of processes foUow. Type B processes tend to be promoted by organizations that seU and service equipment for producing microcapsules. Most Type A processes are not promoted by equipment manufacturers, but are developed and used by organizations that produce microcapsules. [Pg.318]

The catalysts used in the industrial alkylation processes are strong Hquid acids, either sulfuric acid [7664-93-9] (H2SO or hydrofluoric acid [7664-39-3] (HE). Other strong acids have been shown to be capable of alkylation in the laboratory but have not been used commercially. Aluminum chloride [7446-70-0] (AlCl ) is suitable for the alkylation of isobutane with ethylene (12). Super acids, such as trifluoromethanesulfonic acid [1493-13-6] also produce alkylate (13). SoHd strong acid catalysts, such as Y-type zeoHte or BE -promoted acidic ion-exchange resin, have also been investigated (14—16). [Pg.45]

Reduction of sulfur dioxide by methane is the basis of an Allied process for converting by-product sulfur dioxide to sulfur (232). The reaction is carried out in the gas phase over a catalyst. Reduction of sulfur dioxide to sulfur by carbon in the form of coal has been developed as the Resox process (233). The reduction, which is conducted at 550—800°C, appears to be promoted by the simultaneous reaction of the coal with steam. The reduction of sulfur dioxide by carbon monoxide tends to give carbonyl sulfide [463-58-1] rather than sulfur over cobalt molybdate, but special catalysts, eg, lanthanum titanate, have the abiUty to direct the reaction toward producing sulfur (234). [Pg.144]

Ha2ards encountered with tungsten may be caused by substances associated with the production and use of tungsten, eg. As, Sb, Pb, and other impurities in tungsten ores, Co aerosols and dust in the carbide industry, and thoria used in welding electrodes. Lanthanum is being promoted as a substitute for thoria in this appHcation. [Pg.285]

Newer resins include polysulfone, polyethersulfone, polyetherimide, and polyetherketone. Some of these newer materials are high temperature thermoplastic, not thermoset, resins. They are being promoted for the design of injection-molded printed circuit boards in three-dimensional shapes for functional appHcations as an alternative to standard flat printed circuit boards. Only semiadditive or fully additive processing can be used with these devices. [Pg.111]

Composite Plating. An electroless nickel matrix can be used to securely bond diamonds to cutting tools, and electroless nickel—diamond composites are also used (see Tool materials). The NYE-CARB process gives a siUcon carbide—electroless nickel composite that has extremely high abrasion resistance (49). Electroless nickel—Teflon composites are being promoted as low friction materials. [Pg.113]

WeU-cleaned aluminum filings react at room temperature in the presence of mercuric chloride (20,21). In an autoclave, metallic aluminum and ethyl alcohol react without a catalyst at 120°C (22). The reaction can also be promoted by the addition of sodium ethoxide (23). Aluminum should be avoided as a material of constmction for ethanol service. [Pg.402]

Isopropyl Ether. Isopropyl ether is manufactured by the dehydration of isopropyl alcohol with sulfuric acid. It is obtained in large quantities as a by-product in the manufacture of isopropyl alcohol from propylene by the sulfuric acid process, very similar to the production of ethyl ether from ethylene. Isopropyl ether is of moderate importance as an industrial solvent, since its boiling point Hes between that of ethyl ether and acetone. Isopropyl ether very readily forms hazardous peroxides and hydroperoxides, much more so than other ethers. However, this tendency can be controlled with commercial antioxidant additives. Therefore, it is also being promoted as another possible ether to be used in gasoline (33). [Pg.429]

Film-type condensation is more common and more dependable. Dropwise condensation normally needs to be promoted by introducing an impurity into the vapor stream. Substantially higher (6 to 18 times) coefficients are obtained for dropwise condensation of steam, but design methods are not available. Therefore, the development of equations for condensation will be for the film type only. [Pg.566]

Temperature The level of the temperature measurement (4 K, 20 K, 77 K, or higher) is the first issue to be considered. The second issue is the range needed (e.g., a few degrees around 90 K or 1 to 400 K). If the temperature level is that of air separation or liquefact-ing of natural gas (LNG), then the favorite choice is the platinum resistance thermometer (PRT). Platinum, as with all pure metals, has an electrical resistance that goes to zero as the absolute temperature decreases to zero. Accordingly, the lower useful limit of platinum is about 20 K, or liquid hydrogen temperatures. Below 20 K, semiconductor thermometers (germanium-, carbon-, or silicon-based) are preferred. Semiconductors have just the opposite resistance-temperature dependence of metals—their resistance increases as the temperature is lowered, as fewer valence electrons can be promoted into the conduction band at lower temperatures. Thus, semiconductors are usually chosen for temperatures from about 1 to 20 K. [Pg.1136]

Figure 5.2 The modification of the electron energy distribution curve by the presence of diffraction limits in a crystal. The lower filled band is separated from upper unoccupied states in a semiconductor by a small energy difference, so that some electrons can be promoted to conduction by an increase in temperature... Figure 5.2 The modification of the electron energy distribution curve by the presence of diffraction limits in a crystal. The lower filled band is separated from upper unoccupied states in a semiconductor by a small energy difference, so that some electrons can be promoted to conduction by an increase in temperature...
The coupling reaction proceeds better when a rigorously degassed Raney nickel catalyst is used, but a nickel catalyst prepared by a much simplifled procedure (Note 9) is also effective. The coupling may also be promoted by other elements, including copper and palladium. [Pg.21]

Ester hydrolysis can also be promoted by nucleophilic catalysis. If a component of the reaction system is a more effective nucleophile toward the carbonyl group than hydroxide ion or water under a given set of conditions, an acyl-transfer reaction can take place to form an intermediate ... [Pg.477]

Many salts are coiTosive to common materials of construction, as demonstrated in Tables 4.8 and 4.9. Corrosion may be promoted, or accelerated, by traces of contaminants. [Pg.55]

The principal use of the alkylation process is the production of high octane aviation and motor gasoline blending stocks by the chemical addition of C2, C3, C4, or C5 olefins or mixtures of these olefins to an iso-paraffin, usually isobutane. Alkylation of benzene with olefins to produce styrene, cumene, and detergent alkylate are petrochemical processes. The alkylation reaction can be promoted by concentrated sulfuric acid, hydrofluoric acid, aluminum chloride, or boron fluoride at low temperatures. Thermal alkylation is possible at high temperatures and very high pressures. [Pg.223]

Addition to the 6,7-double bond is also observed with 4-chloro-A -3-ketones (20). Attack at the 1,2-double bond occurs as well to give mainly the la,2a 6, 7j -dimethylene steroids (21) in addition to some la,2a 6a,7a-dimethylene compounds (22). Reaction at the 6,7-double bond in the 4-chlorotrienone series may be promoted by the —I effect of the 4-chloro group resulting in an increased positive character at Methylena-... [Pg.117]

Thermally unfavorable [2-1-2] cycloadditions often can be promoted photo chemically [136,137,138], some examples for fluorinated derivatives are given in equations 60-62... [Pg.788]

Now, it can be postulated that solvolysis rate should be a function of two properties of the solvent one is its ionizing power, and the other is its nucleo-philicity. An SnI process should be promoted by high ionizing power, and an Sn2 process by high solvent nucleophilicity. At this point, we are ready to bring the extrathermodynamic approach to bear on this problem. This was initiated by Grun-wald and Winstein, who defined a solvent ionizing power parameter Y by... [Pg.430]

The ability to perform the AE reaetion under eatalytie eonditions via the addition of moleeular sieves has greatly enhaneed the synthetie utility of the reaetion. For water-soluble epoxy aleohols, the eatalytie eonditions are benefieial for both enantioseleetivity and isolated yield. In addition, epoxy aleohols that are suseeptible to ring opening via nueleophilie substitution at the C-3 position also greatly benefit from eatalytie eonditions, sinee the substitution reaetion is known to be promoted by Ti(IV) speeies. [Pg.53]


See other pages where Being Promoted is mentioned: [Pg.177]    [Pg.310]    [Pg.1946]    [Pg.107]    [Pg.60]    [Pg.200]    [Pg.30]    [Pg.33]    [Pg.273]    [Pg.328]    [Pg.195]    [Pg.400]    [Pg.174]    [Pg.37]    [Pg.499]    [Pg.337]    [Pg.272]    [Pg.85]    [Pg.356]    [Pg.494]    [Pg.145]    [Pg.66]    [Pg.67]    [Pg.151]    [Pg.436]    [Pg.210]    [Pg.554]    [Pg.130]    [Pg.870]   
See also in sourсe #XX -- [ Pg.156 ]




SEARCH



© 2024 chempedia.info