Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isoprene preparation

The same catalysts homopolymerize isoprene. Preparation of syndiotactic styrene/butadiene block co-polymers by means of CpTiX3/MAO catalysts (X = C1, F) and Cp TiMe3/MAO has been reported.1047... [Pg.1085]

Polymer particles have been observed using STEM in order to find the differences in their internal structures. Examples include particles of poly(styrene-fe-sodium acrylate), poly(styrene- -4-vinylpyridine), and poly(styrene-fe-isoprene) prepared by solvent evaporation [56]. In these systems, the differences between amphiphilic (hollow... [Pg.412]

Table 2.11 shows the proportions of the different repeat units in homopolymers of butadiene and isoprene prepared using various polymerization conditions. The factors which are of importance in determining these proportions are ... [Pg.89]

From the time that isoprene was isolated from the pyrolysis products of natural mbber (1), scientific researchers have been attempting to reverse the process. In 1879, Bouchardat prepared a synthetic mbbery product by treating isoprene with hydrochloric acid (2). It was not until 1954—1955 that methods were found to prepare a high i i -polyisoprene which dupHcates the stmcture of natural mbber. In one method (3,4) a Ziegler-type catalyst of tri alkyl aluminum and titanium tetrachloride was used to polymerize isoprene in an air-free, moisture-free hydrocarbon solvent to an all i7j -l,4-polyisoprene. A polyisoprene with 90% 1,4-units was synthesized with lithium catalysts as early as 1949 (5). [Pg.462]

With the avadabihty of polymerization catalysts, extensive efforts were devoted to developing economical processes for manufacture of isoprene. Several synthetic routes have been commercialized. With natural mbber as an alternative, the ultimate value of the polymer was more or less dictated by that market. The first commercial use of isoprene in the United States started in 1940. It was used as a minor comonomer with isobutylene for the preparation of butyl mbber. Polyisoprene was commercialized extensively in the 1960s (6). In the 1990s isoprene is used almost exclusively as a monomer for polymerization (see ELASTOLffiRS,SYNTHETic-POLYisoPRENE). [Pg.462]

A telomerization reaction of isoprene can be carried out by treatment with 2-chloro-3-pentene, prepared by the addition of dry HCl to 1,3-pentadiene (67). An equimolar amount of isoprene in dichi oromethane reacts with the 2-chloro-3-pentene at 10°C with stannic chloride as catalyst. l-Chloro-3,5-dimethyl-2,6-octadiene is obtained in 80% yield by 1,4-addition. [Pg.465]

Table 3. Isoprene Specification for the Preparation of High c/s-Polyisoprene ... Table 3. Isoprene Specification for the Preparation of High c/s-Polyisoprene ...
The first successhil use of lithium metal for the preparation of a i7j -l,4-polyisoprene was aimounced in 1955 (50) however, lithium metal catalysis was quickly phased out in favor of hydrocarbon soluble organ olithium compounds. These initiators provide a homogeneous system with predictable results. Organ olithium initiators are used commercially in the production of i7j -l,4-polyisoprene, isoprene block polymers, and several other polymers. [Pg.467]

Another group of isoprene polymerization catalysts is based on alanes and TiCl. In place of alkyl aluminum, derivatives of AlH (alanes) are used and react with TiCl to produce an active catalyst for the polymerization of isoprene. These systems are unique because no organometaHic compound is involved in producing the active species from TiCl. The substituted alanes are generally complexed with donor molecules of the Lewis base type, and they are Hquids or soHds that are soluble in aromatic solvents. The performance of catalysts prepared from AlHCl20(C2H )2 with TiCl has been reported (101). [Pg.467]

Methyl Isopropyl Ketone. Methyl isopropyl ketone [563-80-4] (3-methyl-2-butanone) is a colorless Hquid with a characteristic odor of lower ketones. It can be produced by hydrating isoprene over an acidic catalyst at 200—300°C (150,151) or by acid-catalyzed condensation of methyl ethyl ketone and formaldehyde to 2-methyl-l-buten-3-one, foUowed by hydrogenation to the product (152). Other patented preparations are known (155,156). Methyl isopropyl ketone is used as an intermediate in the production of pharmaceuticals and fragrances (see Perfumes), and as a solvent (157). It is domestically available from Eastman (Longview, Texas) (47). [Pg.493]

Such copolymers of oxygen have been prepared from styrene, a-methylstyrene, indene, ketenes, butadiene, isoprene, l,l-diphen5iethylene, methyl methacrjiate, methyl acrylate, acrylonitrile, and vinyl chloride (44,66,109). 1,3-Dienes, such as butadiene, yield randomly distributed 1,2- and 1,4-copolymers. Oxygen pressure and olefin stmcture are important factors in these reactions for example, other products, eg, carbonyl compounds, epoxides, etc, can form at low oxygen pressures. Polymers possessing dialkyl peroxide moieties in the polymer backbone have also been prepared by base-catalyzed condensations of di(hydroxy-/ f2 -alkyl) peroxides with dibasic acid chlorides or bis(chloroformates) (110). [Pg.110]

Uses. /-Butyl hypochlorite has been found useful in upgrading vegetable oils (273) and in the preparation of a-substituted acryflc acid esters (274) and esters of isoprene halohydrins (275). Numerous patents describe its use in cross-linking of polymers (qv) (276), in surface treatment of mbber (qv) (277), and in odor control of polymer latexes (278). It is used in the preparation of propylene oxide (qv) in high yield with Httle or no by-products (269,279). Fluoroalkyl hypochlorites are useful as insecticides, initiators for polymerizations, and bleaching and chlorinating agents (280). [Pg.475]

The first sulfur curable copolymer was prepared ia ethyl chloride usiag AlCl coinitiator and 1,3-butadiene as comonomer however, it was soon found that isoprene was a better diene comonomer and methyl chloride was a better polymerization diluent. With the advent of World War II, there was a critical need to produce synthetic elastomers in North America because the supply of natural mbber was drastically curtailed. This resulted in an enormous scientific and engineering effort that resulted in commercial production of butyl mbber in 1943. [Pg.480]

A living cationic polymeriza tion of isobutylene and copolymeriza tion of isobutylene and isoprene has been demonstrated (22,23). Living copolymerizations, which proceed in the absence of chain transfer and termination reactions, yield the random copolymer with narrow mol wt distribution and well-defined stmcture, and possibly at a higher polymerization temperature than the current commercial process. The isobutylene—isoprene copolymers are prepared by using cumyl acetate BCl complex in CH Cl or CH2CI2 at —30 C. The copolymer contains 1 8 mol % trans 1,4-isoprene... [Pg.480]

Polyisobutylene and isobutylene—isoprene copolymers are considered to have no chronic hazard associated with exposure under normal industrial use. Some grades can be used in chewing-gum base, and are regulated by the PDA in 21 CPR 172.615. Vulcanized products prepared from butyl mbber or halogenated butyl mbber contain small amounts of toxic materials as a result of the particular vulcanization chemistry. Although many vulcanizates are inert, eg, zinc oxide cured chlorobutyl is used extensively in pharmaceutical stoppers, specific recommendations should be sought from suppHers. [Pg.487]

Third Monomers. In order to achieve certain property improvements, nitrile mbber producers add a third monomer to the emulsion polymerization process. When methacrylic acid is added to the polymer stmcture, a carboxylated nitrile mbber with greatly enhanced abrasion properties is achieved (9). Carboxylated nitrile mbber carries the ASTM designation of XNBR. Cross-linking monomers, eg, divinylbenzene or ethylene glycol dimethacrylate, produce precross-linked mbbers with low nerve and die swell. To avoid extraction losses of antioxidant as a result of contact with fluids duriag service, grades of NBR are available that have utilized a special third monomer that contains an antioxidant moiety (10). FiaaHy, terpolymers prepared from 1,3-butadiene, acrylonitrile, and isoprene are also commercially available. [Pg.522]

The preparation of a synthetic polyisoprene was first reported in 1879 by Bouchardat (1), who treated isoprene [78-79-5] obtained from the destmctive distillation of natural mbber with hydrochloric acid. This discovery led to a search for a way of converting isoprene into a material dupHcating natural mbber (Hepea brasilienses). During World War II, scientists extensively studied the polymerization of isoprene with the hope of replicating natural mbber since the United States was temporarily cut off from sufficient natural mbber suppHes. These studies were not successful. PinaHy, in 1954 the B.E. [Pg.2]

Until the mid-1950s the only polyolefins (polyalkenes) of commercial importance were polyethylene, polyisobutylene and isobutylene-isoprene copolymers (butyl rubber). Attempts to produce polymers from other olefins had, at best, resulted only in the preparation of low molecular weight material of no apparent commercial value. [Pg.247]

The earliest SIS block copolymers used in PSAs were nominally 15 wt% styrene, with an overall molecular weight on the order of 200,000 Da. The preparation by living anionic polymerization starts with the formation of polystyryl lithium, followed by isoprene addition to form the diblock anion, which is then coupled with a difunctional agent, such as 1,2-dibromoethane to form the triblock (Fig. 5a, path i). Some diblock material is inherently present in the final polymer due to inefficient coupling. The diblock is compatible with the triblock and acts... [Pg.480]

To overcome these problems with the first generation Brmsted acid-assisted chiral Lewis acid 7, Yamamoto and coworkers developed in 1996 a second-generation catalyst 8 containing the 3,5-bis-(trifluoromethyl)phenylboronic acid moiety [10b,d] (Scheme 1.15, 1.16, Table 1.4, 1.5). The catalyst was prepared from a chiral triol containing a chiral binaphthol moiety and 3,5-bis-(trifluoromethyl)phenylboronic acid, with removal of water. This is a practical Diels-Alder catalyst, effective in catalyzing the reaction not only of a-substituted a,/ -unsaturated aldehydes, but also of a-unsubstituted a,/ -unsaturated aldehydes. In each reaction, the adducts were formed in high yields and with excellent enantioselectivity. It also promotes the reaction with less reactive dienophiles such as crotonaldehyde. Less reactive dienes such as isoprene and cyclohexadiene can, moreover, also be successfully employed in reactions with bromoacrolein, methacrolein, and acrolein dienophiles. The chiral ligand was readily recovered (>90%). [Pg.13]

Another chiral titanium reagent, 11, was developed by Corey et al. [17] (Scheme 1.24). The catalyst was prepared from chiral ris-N-sulfonyl-2-amino-l-indanol and titanium tetraisopropoxide with removal of 2-propanol, followed by treatment with one equivalent of SiCl4, to give the catalytically-active yellow solid. This catalyst is thought not to be a simple monomer, but rather an aggregated species, as suggested by NMR study. Catalyst 11 promotes the Diels-Alder reaction of a-bro-moacrolein with cyclopentadiene or isoprene. [Pg.18]

Koschelew has recently prepared a closely related olefinic terpene, which he has termed /3-myrcene, by treating isoprene in a sealed tube to 80° to 90° for five days. This body has the constitution —... [Pg.78]

Simple conjugated dienes used in polymer synthesis include 1,3-butadiene, chloroprene (Z-chloro-l -butadiene), and isoprene (2-methyl-l,3-butadiene). Isoprene has been prepared industrially by several methods, including the acid-catalyzed double dehydration of S-methyl-l/S-butanediol. [Pg.483]

Essentially the same procedure may be used to produce mixtures of cyclodimers from isoprene,4 1,3-cyclopentadiene,4 and 1,3-cyclohexadiene.7 Separation of all products is somewhat difficult in most cases but has always been possible by preparative vapor phase chromatography. Despite the problems that may be involved in separation of desired products in some instances, photocyclization frequently is the method of choice for preparation of 1,2-dialkenylcyclobutanes if they can be made major products of photoreactions. Starting materials are readily available, and the preparations are easily carried out on the scale described. There is little doubt that the method is the best for preparation of trans-1,2-divinyleyclob u tane. [Pg.68]

Poly(isoprene) can also he prepared by radical polymerization/ 17 Although the ratio of l,4- l,2- 4,3- units is stated to be ca 90 5 5 irrespective of the polymerization temperature (range -20-50 °C), the proportion of cis-1,4-addition increases from 0 at -20 °C to 17.6% at 50 °C. EPR studies indicate that radicals add preferentially to the 1-position.87... [Pg.185]


See other pages where Isoprene preparation is mentioned: [Pg.48]    [Pg.48]    [Pg.72]    [Pg.219]    [Pg.467]    [Pg.469]    [Pg.23]    [Pg.467]    [Pg.480]    [Pg.481]    [Pg.483]    [Pg.533]    [Pg.2]    [Pg.4]    [Pg.4]    [Pg.5]    [Pg.29]    [Pg.476]    [Pg.483]    [Pg.739]    [Pg.38]    [Pg.739]    [Pg.14]    [Pg.21]    [Pg.24]   
See also in sourсe #XX -- [ Pg.95 ]




SEARCH



© 2024 chempedia.info