Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isobutane manufacture

Propylene oxide [75-56-9] is manufactured by either the chlorohydrin process or the peroxidation (coproduct) process. In the chlorohydrin process, chlorine, propylene, and water are combined to make propylene chlorohydrin, which then reacts with inorganic base to yield the oxide. The peroxidation process converts either isobutane or ethylbenzene direcdy to an alkyl hydroperoxide which then reacts with propylene to make propylene oxide, and /-butyl alcohol or methylbenzyl alcohol, respectively. Table 1 Hsts producers of propylene glycols in the United States. [Pg.365]

Methyl tert-Butylluther Methyl /-butyl ether (MTBE) is an increasingly important fuel additive. Platinum—tin and other PGM catalysts are used for the dehydrogenation of isobutane to isobutene, an intermediate step in MTBE manufacture. [Pg.173]

There are other commercial processes available for the production of butylenes. However, these are site or manufacturer specific, eg, the Oxirane process for the production of propylene oxide the disproportionation of higher olefins and the oligomerisation of ethylene. Any of these processes can become an important source in the future. More recentiy, the Coastal Isobutane process began commercialisation to produce isobutylene from butanes for meeting the expected demand for methyl-/ rZ-butyl ether (40). [Pg.366]

Particular reactions can occur in either or both phases or near the interface. Nitration of aromatics with HNO3-H2SO4 occurs in the aqueous phase (Albright and Hanson, eds.. Industrial and Laboratoiy Nitration.s, ACS Symposium Series 22 [1975]). An industrial example of reaction in both phases is the oximation of cyclohexanone, a step in the manufacture of caprolactam for nylon (Rod, Proc. 4th Interna-tional/6th European Symposium on Chemical Reactions, Heidelberg, Pergamon, 1976, p. 275). The reaction between butene and isobutane... [Pg.2116]

To obtain light ends conversion, alkylation and polymerization are used to increase the relative amounts of liquid fuel products manufactured. Alkylation converts olefins, (propylene, butylenes, amylenes, etc.), into high octane gasoline by reacting them with isobutane. Polymerization involves reaction of propylene and/or butylenes to produce an unsamrated hydrocarbon mixture in the motor gasoline boiling range. [Pg.10]

Zeolites have also been described as efficient catalysts for acylation,11 for the preparation of acetals,12 and proved to be useful for acetal hydrolysis13 or intramolecular lactonization of hydroxyalkanoic acids,14 to name a few examples of their application. A number of isomerizations and skeletal rearrangements promoted by these porous materials have also been reported. From these, we can underline two important industrial processes such as the isomerization of xylenes,2 and the Beckmann rearrangement of cyclohexanone oxime to e-caprolactam,15 which is an intermediate for polyamide manufacture. Other applications include the conversion of n-butane to isobutane,16 Fries rearrangement of phenyl esters,17 or the rearrangement of epoxides to carbonyl compounds.18... [Pg.33]

One of the commercial benefits of this route is the value of the coproducts, tertiary butyl alcohol (TBA) when isobucane is used, and styrene when ethylbenzene is used. TBA also can be easily hydro-treated back to isobutane if a recycle stream for PO manufacture is more advantageous. [Pg.163]

The second manufacturing method for propylene oxide is via peroxidation of propylene, called the Halcon process after the company that invented it. Oxygen is first used to oxidize isobutane to r-butyl hydroperoxide (BHP) over a molybdenum naphthenate catalyst at 90°C and 450 psi. This oxidation occurs at the preferred tertiary carbon because a tertiary alkyl radical intermediate can be formed easily. [Pg.168]

C4 Alkenes. Several industrial processes have been developed for olefin production through catalytic dehydrogenation138 166 167 of C4 alkenes. All four butenes are valuable industrial intermediates used mostly for octane enhancement. Isobutylene, the most important isomer, and its dimer are used to alkylate isobutane to produce polymer and alkylate gasoline (see Section 5.5.1). Other important utilizations include oxidation to manufacture maleic anhydride (see Section 9.5.4) and hydroformylation (see Section 7.1.3). [Pg.48]

World War II when the first commercial isomerization processes were introduced to manufacture isobutane as a feedstock for aviation alkylate. The Friedel-Crafts catalysts are highly active at 100°-200°F whereas the conventional platinum-alumina reforming catalysts give reasonable reaction rates only above 850°F. [Pg.147]

A recent achievement worthy of note is the manufacture of microspheres containing an inert gas, e.g. nitrogen, or a volatile liquid, such as the freons The patent literature contains methods for producing microspheres based on poly(vinyl chloride) and poly(divinyl chloride), containing isobutane or carbon tetrachloride 52>, and based on poly(methyl methacrylate), containing neopentane . Microspheres containing liquid dyes and oils are also used to make syntactic foams 58>. [Pg.74]

Although aviation gasoline can be made by the alkylation of isobutane with propylene, butylenes, and amylenes, the butylenes are by far the predominant feed. In a few cases a mixture of di- and triisobutylene polymers, which is a byproduct of butadiene manufacture, is used as part of the olefinic charge. Either sulfuric acid or hydrofluoric acid can be used as a catalyst when aviation gasoline is produced by the alkylation reaction. [Pg.174]

Propylene polymers are relatively stable, but the butylene polymers can be broken down under many conditions. Such a breakdown occurs when butylene polymers are charged to an alkylation unit, when the individual butylene molecules react with the isobutane. The stability of the propylene polymers is one of the reasons why they are preferred as starting materials for such reactions as the synthesis of dodecyl benzene in the manufacture of detergents. [Pg.222]

The economics of any manufacturing process improves if the co-product or side product has a market. 90% of the world production of phenol is through the cumene hydroperoxide route because of the economic advantage of the coproduct acetone. Oxirane technology for the production of propylene oxide from ethyl benzene leads to a co-product styrene and from isobutane leads to a co-product /-butyl alcohol. [Pg.51]

Isobutene is present in refinery streams. Especially C4 fractions from catalytic cracking are used. Such streams consist mainly of n-butenes, isobutene and butadiene, and generally the butadiene is first removed by extraction. For the purpose of MTBE manufacture the amount of C4 (and C3) olefins in catalytic cracking can be enhanced by adding a few percent of the shape-selective, medium-pore zeolite ZSM-5 to the FCC catalyst (see Fig. 2.23), which is based on zeolite Y (large pore). Two routes lead from n-butane to isobutene (see Fig. 2.24) the isomerization/dehydrogenation pathway (upper route) is industrially practised. Finally, isobutene is also industrially obtained by dehydration of f-butyl alcohol, formed in the Halcon process (isobutane/propene to f-butyl alcohol/ propene oxide). The latter process has been mentioned as an alternative for the SMPO process (see Section 2.7). [Pg.58]


See other pages where Isobutane manufacture is mentioned: [Pg.403]    [Pg.253]    [Pg.372]    [Pg.428]    [Pg.99]    [Pg.220]    [Pg.225]    [Pg.290]    [Pg.414]    [Pg.815]    [Pg.572]    [Pg.83]    [Pg.488]    [Pg.111]    [Pg.48]    [Pg.255]    [Pg.372]    [Pg.137]    [Pg.804]    [Pg.428]    [Pg.220]    [Pg.225]    [Pg.53]    [Pg.217]    [Pg.217]    [Pg.685]    [Pg.691]   
See also in sourсe #XX -- [ Pg.192 ]




SEARCH



Isobutane

Isobutanes

© 2024 chempedia.info