Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

IR absorption bands

Analytical and Test Methods. For a review of detection, deterrnination, and identification of ketenes see Reference 67. Typical properties are the strong ir absorption bands at 2151 cm (C—O) and at 1120 cm as weU as a very low field signal of the j hybridi2ed carbon at approximately 194 to 206 ppm and a very high field signal of the s hybridi2ed carbon at approximately 2.5 to 27 ppm in C-nmr spectroscopy. [Pg.476]

Analytical and Test Methods. Colorimetric quaUtative tests for diketene are known but seldom used (131). Identification is by spectrometric methods. Diketene has typical ir absorption bands at - ISSO, 1855, and 1685 cm , and signals at 3.92 (t), 4.51 (m), and 4.87 (m) ppm in the H-nmr spectmm (CDCl ). Purity is routinely monitored by gc. Alternatively, diketene is quantitatively converted to acetoacetic derivatives which are assayed by standard methods. [Pg.479]

Laser Raman Microprobe. A more sophisticated microscope is the Laser Raman Microprobe, sometimes referred to as MOLE (the molecular orbital laser examiner). This instmment is designed around a light microscope to yield a Raman spectmm (45) on selected areas or particles, often <1 ia volume. The data are related, at least distantly, to iafrared absorption, siace the difference between the frequency of the exciting laser and the observed Raman frequency is the frequency of one of the IR absorption peaks. Both, however, result from rotational and vibrational states. Unfortunately, strong IR absorption bands are weak Raman scatterers and vice versa hence there is no exact correspondence between the two. [Pg.335]

Table 29. IR absorption bands of Nb-O and Nb-F bond vibrations in the compounds MsNbiOjFl4 [115], Cs Nb202F9 and Rb7Nb404F 9 [198] (underlined numbers refer to highest intensity bands)... Table 29. IR absorption bands of Nb-O and Nb-F bond vibrations in the compounds MsNbiOjFl4 [115], Cs Nb202F9 and Rb7Nb404F 9 [198] (underlined numbers refer to highest intensity bands)...
Opposite behavior was displayed by molten fluoride systems. For instance, no bands were observed in the thin layer emission spectrum of a KF - K2SiF6 melt, whereas increasing the melt layer to 10-20 mm led to the appearance of two intensive bands at 730 and 476 cm 1. These bands correspond to v3 and v4 vibrations of the complex ion SiF62 Solid K2SiF6 is characterized by IR absorption bands at 741 and 483 cm 1 [343]. [Pg.172]

Spectroscopic Data. Freshly prepd nitrosomethane has an IR absorption band at 6.3—6.4 p which slowly decays and is replaced by a band at 11 y characteristic of formaldehyde oxime (Ref 8). The visible absorption Amax is 287my in eth and at 266—7m p in w (Ref 4)... [Pg.103]

Hisatsune and co-workers [290—299] have made extensive kinetic studies of the decomposition of various ions in alkali halide discs. Widths and frequencies of IR absorption bands are an indication of the extent to which a reactant ion forms a solid solution with the matrix halide. Sodium acetate was much less soluble in KBr than in KI but the activation energy for acetate breakdown in the latter matrix was the larger [297]. Shifts in frequency, indicating changes in symmetry, have been reported for oxalate [294] and formate [300] ions dispersed in KBr. [Pg.29]

Four IR absorption bands have been identified in the spectrum of the hydroxysulfonyl radical (HOSO 2) which has been obtained by the reaction of hydroxyl radicals with sulfur dioxide in argon matrix at 11 K16. The observed bands at 3539.9 and 759.5 cm 1 have been assigned to O—H and S—OH stretching modes while the bands at 1309.2 and 1097.3 cm-1 have been assigned to the asymmetric and symmetric stretching modes of the double bonded S02 moiety. These data are consistent with the theoretical prediction on the geometry of the hydroxysulfonyl radical12. [Pg.1094]

Infrared Spectra. The IR absorption bands for 2,3-di-tran -styrylquinoxaline (131, R = H) in the range 400-4000 cm have been assigned and compared with those for the o-, m-, and p-nitro analogs (131, R = 0-NO2, m-NOa, and... [Pg.116]

The EMIRS and SNIFTIRS methods provide the IR vibrational spectra (really the difference spectra - see later) of all species whose population changes either on the electrode surface or in the electrical double layer or in the diffusion layer in response to changing the electrode potential. Spectra will also be obtained for adsorbed species whose population does not change but which undergo a change in orientation or for which the electrode potential alters the Intensity, the position or shape of IR absorption bands. Shifts in band maxima with potential at constant coverage (d nax 6 very common for adsorbed species and they provide valuable information on the nature of adsorbate/absorbent bonding and hence also additional data on adsorbate orientation. [Pg.552]

Reaction products can also be identified by in situ infrared reflectance spectroscopy (Fourier transform infrared reflectance spectroscopy, FTIRS) used as single potential alteration infrared reflectance spectroscopy (SPAIRS). This method is suitable not only for obtaining information on adsorbed products (see below), but also for observing infrared (IR) absorption bands due to the products immediately after their formation in the vicinity of the electrode surface. It is thus easy to follow the production of CO2 versus the oxidation potential and to compare the behavior of different electrocatalysts. [Pg.76]

The different species formed by steps (18) to (20) or (18 ) to (20 ) have been detected by in situ infrared reflectance spectroscopy, and such dissociative steps are now widely accepted even if the exact nature of the species formed during (20) or (20 ) is still a subject of discussion. Several groups proposed the species (COH)3js as the main, strongly adsorbed species on the platinum surface, even though no absorption infrared band can be definitely attributed to (COH),, . However, the formyl-like species ( CHO), , . has been formally identified, since it gives an IR absorption band ataroimd 1690cm . ... [Pg.79]

The infrared spectra exhibit the absorption bands corresponding to all these species. Adsorbed CO is detected as IR absorption bands around 2050 cm" for the linearly bonded species and 1870 cm" for the bridge-bonded species. The presence of CO2 is clearly indicated by the sharp band at 2345 cm", which appears at higher potentials the formation of ( CHO)jjj is evidenced by the band at 1690 cm, while that of ( COOHXj by weak absorption bands around 1720 cm (see Figs. 6 to 8). [Pg.81]

Another very interesting result obtained from these FURS measurements is the difference between adsorbed CO obtained from dissolved CO and that from the dissociation of adsorbed methanol. The shift in wave number is more important with dissolved CO. These shifts may also be correlated with the superficial composition of the alloys, and it was observed that the optimized composition for the oxidation of CO (about 50 at.% Ru) is different from that for the oxidation of methanol (about 15 at.% Ru). FTIR spectra also revealed that the amount of adsorbed CO formed from methanol dissociation is considerably higher on R than on Pt-Ru. For a Ptog-Ru-o i alloy, the amount of linearly adsorbed CO is very small (Fig. 8), suggesting a low coverage in the poisoning species. Moreover, by observing the potentials at which the COj IR absorption band appears, it is possible to conclude that the oxidation of both (CHO)ads and (CO)acis species occurs at much lower potentials on a R-Ru alloy electrode than on pure Pt. [Pg.91]

We have seen, in the previous section (and section III.A), that cobalt (Salen) and its active derivatives normally form diamagnetic peroxo type I dioxygen adducts. However, a pyridine solution of Co(3-methoxy Salen) has been shown 137) to take up dioxygen with 1 1 (Co O2) stoichiometry it was found 137) that there was no significant IR absorption band, attributable to the 0—0 stretch, for the oxygenated complex, and this suggested that the dioxygen is symmetrically bonded in an unidentate manner,... [Pg.20]

In either neat dioxane or THF, carbene-ether ylides are observed as a broad IR absorption band between 1560 and 1610 cm , distinct from the IR bands of the free carbenes. With discrete spectroscopic signatures for the free carbene and its corresponding ether ylides, TRIR spectroscopy was used to confirm that the effects described above with dilute ether in Freon-113 were due to specific solvation of the carbene (Scheme 4.6, Reaction 2) rather than a pre-equilibration with the coordinating solvent (Scheme 4.6, Reaction 3) or reactivity of the ylide itself (Scheme 6, Reaction 4). In Freon-113 containing 0.095M THF simultaneous TRIR observation of both the free carbene (x = ca. 500 ns) and the carbene-THF ylide (x = ca. 5ps) was possible7 The observation that lifetimes of these species were observed to be so different conclusively demonstrates that the free carbene and the carbene-THF ylide are not in rapid equilibrium and that Reaction 3 of Scheme 4.6 is not operative. By examining the kinetics of the carbene 34 at 1635 cm directly in Freon-113 with small amounts of added dioxane, it was observed that the rate of reaction with TME was reduced, consistent with Reaction 2 (and not Reaction 4) of Scheme 4.6. [Pg.200]

IR absorption bands are sensitive to the local environment and therefore a spectral shift may occur when an additive is extracted from the polymer. This allows real-time monitoring of the extraction process in situ, as illustrated by Howdle et al. [126] using an organometallic complex. On the other hand,... [Pg.318]

NO Reactions. The most informative derivitization reaction of oxidized polyolefins that we have found for product identification is that with NO. The details of NO reactions with alcohols and hydroperoxides to give nitrites and nitrates respectively have been reported previously, and only the salient features are discussed here (23). The IR absorption bands of primary, secondary and tertiary nitrites and nitrates are shown in Table I. After NO treatment, y-oxidized LLDPE shows a sharp sym.-nitrate stretch at 1276 cm-1 and an antisym. stretch at 1631 cm-1 (Fig. 1), consistent with the IR spectra of model secondary nitrates. Only a small secondary or primary nitrite peak was formed at 778 cm-1. NO treatment of y-oxidized LLDPE which had been treated by iodometry (all -OOH converted to -OH) showed strong secondary nitrite absorptions, but only traces of primary nitrite, from primary alcohol groups (distinctive 1657 cm-1 absorption). However, primary products were more prominent in LLDPE after photo-oxidation. [Pg.383]

The failure to observe photosubstitution in the presence of a sensitizer in which the latter is the principal absorber, the invariance of product quantum yield with wavelengths shorter than 350 nm (onset of n -> -n absorption), and the observation that chloride and bromide ions (known to catalyze S-+T intersystem crossing) strongly diminish the quantum yields of these reactions, strongly points to the lowest excited ir- n singlet state as the reactive species in these transformations. Excitation into the n->ir absorption band results in little product formation. A triplet state may, however, be involved in the photoamination of nitrobenzene.a41)... [Pg.276]

Thermal radiation emitted by an object can be continuous, discontinuous or, in most cases, a mixture. A continuous radiation profile corresponds to an ideal black body, where only the temperature of the emitting object determines the emission profile. Discontinuous thermal emission spectra are caused by photons emitted during the relaxation of excited vibrational states. Since vibrational states are quantised, this results in emission bands at the wavelengths of the corresponding IR absorption bands. [Pg.124]

Several examples of the synthesis of furoxans by dimerisation of nitryl oxides are shown below. The treatment of oximes 302 with iV-bromosuccinimide (NBS) and then with triethylamine leads to the formation of nitrile oxides 303, as shown by the presence of a strong IR absorption band at around 2300 cm 1 typical of the CNO group stretching. Slow dimerization of nitrile oxides 303 took place at room temperature leading to the furoxans 304 in good yields (Scheme 75 and Table 4) <2002S1701>. [Pg.376]

For a fundamental vibrational mode to be IR-active, a change in the molecular dipole must take place during the molecular vibration. This is described as the IR selection rule. Atoms that possess different electronegativity and are chemically bonded change the net dipole of a molecule during normal molecular vibrations. Typically, antisymmetric vibrational modes and vibrations due to polar groups are more likely to exhibit prominent IR absorption bands. [Pg.63]

Fig. 9. IR absorption bands in P-, As-, and Sb-doped Si samples that had been passivated in an H2 plasma. The sharp bands to the left are assigned to H-stretching modes of the donor-H complexes. The spectra were recorded near liquid He temperature. [Reprinted with permission from The American Physical Society, Bergman, K., Stavola, M., Pearton, S.J., Lopata, J. (1988), Phys, Rev. B 37, 2770.]... [Pg.169]

As a second example of the application of ion-beam analysis techniques to semiconductors, we take the calibration of IR absorption measurements of the hydrogen content of sputtered amorphous silicon and silicon nitride. In early measurements, the hydrogen content of glow-discharge a-Si H deduced from IR absorption measurements, using ablsinitio calculations of the absorption cross section of the Si—H IR absorption bands, was com-... [Pg.211]

Ryason and Russel measured the temperature dependence of the IR absorption band halfwidth for valence vibrations of hydroxyl groups on the silica surface.200 At T > 325 K, the least squares method permits a straight line to be drawn through experimental points of the dependence In Avv2 (Tl), the equation of the line appearing as follows 200... [Pg.162]

Fig. A2.2. Temperature dependences measured for the haliwidths Av n of the IR absorption bands for valence vibrations of OH(D) groups on Si02 surface (filled markers) and recalculated for the halfwidths w of three components of Lorentzian lines (empty markers) for OH (1) and (OD) groups of high concentration (2), and for (OD) groups of low concentration (3).2"2... Fig. A2.2. Temperature dependences measured for the haliwidths Av n of the IR absorption bands for valence vibrations of OH(D) groups on Si02 surface (filled markers) and recalculated for the halfwidths w of three components of Lorentzian lines (empty markers) for OH (1) and (OD) groups of high concentration (2), and for (OD) groups of low concentration (3).2"2...
A sensitive probe of electrostatic interactions in the distal pocket is provided by the structural and vibrational properties of the Fe-CO unit [9], The bound CO ligand exhibits three main infrared (IR) absorption bands, denoted Ao, A, and A3, with vibrational frequencies 1965 cm-1, 1949 cm, and 1933 cm, respectively. These bands, which change relative intensity and wave-number depending on temperature, pressure, pH, or solvent [10], are used to identify functionally different conformational substrates of MbCO, denoted taxonomic substates [11], Nevertheless the relationship between the A states and specific structural features of the protein has not yet been clarified. [Pg.76]

The isolated nitrososulphinates are unstable brown crystals with the N=0 IR absorption band near 1840 cm-1, i.e. at shorter wavelengths than in nitroso thiols (1490-1700 cm-1) due to the powerful electron-withdrawing effect of the sulphonyl group. They decompose... [Pg.677]

Infrared spectroscopy has been used to help solve or determine the structure of zeolites. The technique is particularly useful for identifying the presence of double four- and six-rings as well as five-membered pentasil rings. In the structural characterization of beta zeolite, Newsam and coworkers used a variety of techniques including IR, electron microscopy (TEM), X-ray diffraction (XRD) and sorption data to solve the stacked, faulted structure [57]. The presence of IR absorption bands at 1232 and 560cm indicated that the structure contained five-member pentasil building units. [Pg.115]


See other pages where IR absorption bands is mentioned: [Pg.1783]    [Pg.132]    [Pg.423]    [Pg.604]    [Pg.92]    [Pg.283]    [Pg.40]    [Pg.402]    [Pg.153]    [Pg.312]    [Pg.158]    [Pg.94]    [Pg.279]    [Pg.123]    [Pg.402]    [Pg.488]    [Pg.14]    [Pg.138]    [Pg.5]   
See also in sourсe #XX -- [ Pg.152 ]

See also in sourсe #XX -- [ Pg.375 ]




SEARCH



Absorption bands

IR absorption

IR bands

© 2024 chempedia.info