Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic liquids aspects

Theoretical and applied aspects of microwave heating, as well as the advantages of its application are discussed for the individual analytical processes and also for the sample preparation procedures. Special attention is paid to the various preconcentration techniques, in part, sorption and extraction. Improvement of microwave-assisted solution preconcentration is shown on the example of separation of noble metals from matrix components by complexing sorbents. Advantages of microwave-assisted extraction and principles of choice of appropriate solvent are considered for the extraction of organic contaminants from solutions and solid samples by alcohols and room-temperature ionic liquids (RTILs). [Pg.245]

Quality Aspects and Other Questions Related to Commercial Ionic Liquid Production... [Pg.21]

Section 2.1 excellently describes methods used to produce colorless ionic liquids. From this it has become obvious that freshly distilled starting materials and low-temperature processing during the synthesis and drying steps are key aspects for avoidance of coloration of the ionic liquid. [Pg.23]

Other important aspects to consider during the scaling-up of ionic liquid synthesis are heat management (allcylation reactions are exothermic ) and proper mass transport. For both of these the proper choice of reactor set-up is of crucial importance. [Pg.29]

Intellectual Property Aspects Regarding Ionic Liquids... [Pg.31]

Viewed in conjunction with the solid-like, nonvolatile nature of ionic liquids, it is apparent that TSILs can be thought of as liquid versions of solid-supported reagents. Unlike solid-supported reagents, however, TSILs possess the added advantages of kinetic mobility of the grafted functionality and an enormous operational surface area (Figure 2.3-1). It is this combination of features that makes TSILs an aspect of ionic liquids chemistry that is poised for explosive growth. [Pg.34]

The choice of reaction solvent is also of concern in the synthesis of new TSILs. Toluene and acetonitrile are the most widely used solvents, the choice in any given synthesis being dictated by the relative solubilities of the starting materials and products. The use of volatile organic solvents in the synthesis of ionic liquids is decidedly the least green aspect of their chemistry. Notably, recent developments in the area of the solventless synthesis of ionic liquids promise to improve this situation [10]. [Pg.35]

However, a number of limitations are still evident when tetrafluorohorate and hexafluorophosphate ionic liquids are used in homogeneous catalysis. The major aspect is that these anions are still relatively sensitive to hydrolysis. The tendency to anion hydrolysis is of course much less pronounced than that of the chloroalu-minate melts, hut it still occurs and this has major consequences for their use in transition metal catalysis. For example, the [PF ] anion of l-hutyl-3-methylimida-2olium ([BMIM]) hexafluorophosphate was found (in the author s laboratories) to hydrolyze completely after addition of excess water when the sample was kept for 8 h at 100 °C. Gaseous HF and phosphoric acid were formed. Under the same conditions, only small amounts of the tetrafluorohorate ion of [BMlMjjBFJ was converted into HF and boric acid [10]. The hydrolytic formation of HF from the anion of the ionic liquid under the reaction conditions causes the following problems with... [Pg.215]

As well as this quite obvious environmental aspect, the switch from a volatile, flammable, organic solvent to an ionic liquid may significantly improve the safety of a given process. This will be especially true in oxidation reactions in which air or pure oxygen are used as oxidants the use of common organic solvents is often restricted due to the potential formation of explosive mixtures between oxygen and... [Pg.217]

Because of the great importance of liquid-liquid biphasic catalysis for ionic liquids, all of Section 5.3 is dedicated to specific aspects relating to this mode of reaction, with special emphasis on practical, technical, and engineering needs. Finally, Section 5.4 summarizes a very interesting recent development for biphasic catalysis with ionic liquids, in the form of the use of ionic liquid/compressed CO2 biphasic mixtures in transition metal catalysis. [Pg.220]

In general, most of the methods used to analyze the chemical nature of the ionic liquid itself, as described in Chapter 4, should also be applicable, in some more sophisticated form, to study the nature of a catalyst dissolved in the ionic liquid. For attempts to apply spectroscopic methods to the analysis of active catalysts in ionic liquids, however, it is important to consider three aspects a) as with catalysis in conventional media, the lifetime of the catalytically active species will be very short, making it difficult to observe, b) in a realistic catalytic scenario the concentration of the catalyst in the ionic liquid will be very low, and c) the presence and concentration of the substrate will influence the catalyst/ionic liquid interaction. These three concerns alone clearly show that an ionic liquid/substrate/catalyst system is quite complex and may be not easy to study by spectroscopic methods. [Pg.226]

Because of its significance, some basic principles of the Ni-catalyzed dimerization of propene in chloroaluminate ionic liquids should be presented here. Table 5.2-2 displays some reported examples, selected to explain the most important aspects of oligomerization chemistry in chloroaluminate ionic liquids [97]. [Pg.245]

Ionic liquids operate in true biphasic mode. While the recovery and recyclability of ionic liquid was found to be more efficient than with the conventional AICI3 catalyst (red oil), the selectivity for the monoalkylated aromatic hydrocarbon was lower. In this gas-liquid-liquid reaction, the solubility of the reactants in the ionic phase (e.g. the benzene/ethene ratio in the ionic phase) and the mixing of the phases were probably critical. This is an example in which the engineering aspects are of the utmost importance. [Pg.276]

When starting our first experiments with available ionic liquids, in screening programs to identify suitable systems, we encountered several difficulties such as pH shifts or precipitation. More generally, the following aspects should be taken into account when ionic liquids are used with biocatalysts ... [Pg.338]

In this book we have decided to concentrate on purely synthetic applications of ionic liquids, just to keep the amount of material to a manageable level. FFowever, we think that synthetic and non-synthetic applications (and the people doing research in these areas) should not be treated separately for a number of reasons. Each area can profit from developments made in the other field, especially concerning the availability of physicochemical data and practical experience of development of technical processes using ionic liquids. In fact, in all production-scale chemical reactions some typically non-synthetic aspects (such as the heat capacity of the ionic liquid or product extraction from the ionic catalyst layer) have to be considered anyway. The most important reason for close collaboration by synthetic and non-synthetic scientists in the field of ionic liquid research is, however, the fact that in both areas an increase in the understanding of the ionic liquid material is the key factor for successful future development. [Pg.351]

The aspects of medium engineering summarized so far were a hot topic in biocatalysis research during the 1980s and 1990s [5]. Nowadays, all of them constitute a well-established methodology that is successfully employed by chemists in synthetic applications, both in academia and industry. In turn, the main research interests of medium engineering have moved toward the use of ionic liquids as reaction media and the employment of additives. [Pg.14]

H. Ohno, (ed.), Electrochemical Aspects of Ionic Liquids, Wiley-Interscience, New York, 2005. [Pg.212]

Some theoretical aspects of thiophene reactivity and structure have also been discussed, for example the kinetics of proton transfer from 2,3-dihydrobenzo[6]thiophenc-2-onc <06JOC8203>, the configuration of imines derived from thiophenecarbaldehydes <06JOC7165>, and the relative stability of benzo[c]thiophene <06T12204>. The kinetics of nucleophilic aromatic substitution of some 2-substituted-5-nitrothiophenes in room temperature ionic liquids have also been investigated <06JOC5144>. [Pg.121]

Since the focus of this contribution is clearly on catalysis and catalyst recycle using the ionic liquid methodology it is not possible to go into more detail on the materials science aspects of ionic liquids. However, it should be clearly stated that at least some understanding of the ionic liquid material is a prerequisite for its successful use as a liquid catalyst support in catalysis. Therefore, the interested reader is strongly encouraged to explore the more specialized literature [28],... [Pg.186]

In contrast, we intend to demonstrate the principle aspects of catalyst recycling and regeneration using the ionic liquid methodology. These aspects will be explored in more detail for the example of Rh-catalysed hydroformylation (see Section 7.2). First, however, we will briefly introduce important general facts concerning transition metal catalysis in ionic liquids (see Section 7.1.2). This will be followed by a consideration of liquid-liquid biphasic reactions in these media from an engineering point of view (see Section 7.1.3). [Pg.187]

The possibility of adjusting solubility properties is of particular importance for liquid-liquid biphasic catalysis. Liquid-liquid catalysis can be realised when the ionic liquid is able to dissolve the catalyst, especially if it displays partial solubility of the substrates and poor solubility of the reaction products. Under these conditions, the product phase, which also contains the unconverted reactants, is removed by simple phase decantation. The ionic liquid containing the catalyst can then be recycled. In such a scenario the ionic catalyst solution may be seen as part of the capital investment for a potential technical process (in an ideal case) or at least as a working solution (only a small amount has to be replaced after a certain time of application). A crucial aspect of this concept is the immobilisation of the transition metal catalyst in the ionic liquid. While most transition metal catalysts easily dissolve in an ionic liquid without any special ligand design, ionic ligand systems have been applied with great success to... [Pg.187]

MULTIPHASIC CATALYSIS WITH IONIC LIQUIDS - ENGINEERING ASPECTS... [Pg.189]

In the case of ionic liquids, these general aspects for all fluid-fluid reactions are of particular importance, since mass transfer into an ionic liquid layer is generally slower than into an organic or aqueous medium. This is because ionic liquids usually have much higher viscosities than organic solvents. The least viscous ionic liquids are somewhat similar to ethylene glycol as demonstrated in Table 7.2. However, many ionic liquids used in liquid-liquid biphasic catalysis are significantly more viscous. [Pg.191]

The aspects discussed above are not only relevant for the transfer of a component 1 from one liquid organic phase into the ionic liquid but also for the transfer of reactive gases into the ionic liquids. If the chemical kinetics are relatively fast a special stirrer design (as shown in Figure 7.6) can help to reduce problems related to mass transfer of the reactive gas into the ionic liquid. [Pg.191]

Under this aspect, the group of Jessop [102] investigated the influence of the ionic liquid used on enantioselectivity in the hydrogenation of atropic acid as an example... [Pg.1404]

Jiao, J., et al., Decorating multi-watted carbon nanotubes with Au nanoparticles by amphiphilic ionic liquid self-assembly. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2012. 408 p. 1-7. [Pg.158]

Ohno, H. (Ed.) Electrochemical Aspects of Ionic Liquids, Wiley-Interscience, Hohoken, NJ, 2005 Ohno, H. (Ed.) Ionic Liquids The Front and Future of Material Development, CMC Press, Tokyo, 2003. [Pg.124]


See other pages where Ionic liquids aspects is mentioned: [Pg.72]    [Pg.217]    [Pg.231]    [Pg.339]    [Pg.352]    [Pg.222]    [Pg.14]    [Pg.263]    [Pg.142]    [Pg.99]    [Pg.1416]    [Pg.582]    [Pg.324]    [Pg.92]    [Pg.261]    [Pg.54]    [Pg.54]    [Pg.13]   
See also in sourсe #XX -- [ Pg.629 ]




SEARCH



Electrochemical Aspects of Ionic Liquids Edited by Hiroyuki Ohno

Industrial Aspects of Ionic Liquids

Intellectual Property Aspects Regarding Ionic Liquids

MULTIPHASIC CATALYSIS WITH IONIC LIQUIDS - ENGINEERING ASPECTS

Quality Aspects and Other Questions Related to Commercial Ionic Liquid Production

Quality Aspects of Commercial Ionic Liquid Production

© 2024 chempedia.info