Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid-expanded reactions

Undesired reactions catalyzed by materials of construction or by ancillary materials such as pipe dope and lubricants Boiling liquid, expanding vapor explosions (BLEVEs)... [Pg.59]

Potential explosion phenomena include vapor cloud explosions (VCEs), confined explosions, condensed-phase explosions, exothermic chemical reactions, boiling liquid expanding vapor explosions (BLEVEs), and pressure-volume (PV) ruptures. Potential fire phenomena include flash fires, pool fires, jet fires, and fireballs. Guidelines for evaluating the characteristics of VCEs, BLEVEs, and flash fires are provided in another CCPS publication (Ref. 5). The basic principles from Reference 5 for evaluating characteristics of these phenomena are briefly summarized in this appendix. In addition, the basic principles for evaluating characteristics of the other explosion and fire phenomena listed above are briefly summarized, and references for detailed evaluation of characteristics are provided. [Pg.132]

Vessel mptures can also occur when a higher-temperature liquid or solid is combined with a cooler low boiling liquid, transferring sufficient heat from the hotter material to the colder material such that the colder material rapidly vaporizes. No chemical reactions are involved instead, the explosion occurs because the cooler liquid expands as it is converted to vapor, creating high pressures. These are called physical explosions. A common example is a steam explosion, which occurs when liquid water is accidentally introduced into a process vessel operating at an elevated temperature. If the hotter material is above the superheat limit temperature of the evaporating liquid, initial confinement by a vessel is not required to create an explosion pressure wave. [Pg.133]

A physical explosion, for example, a boiler explosion, a pressure vessel failure, or a BLEVE (Boiling Liquid Expanding Vapor Explosion), is not necessarily caused by a chemical reaction. Chemical explosions are characterized as detonations, deflagrations, and thermal explosions. In the case of a detonation or deflagration (e.g., explosive burning), a reaction front is present that proceeds through the material. A detonation proceeds by a shock wave with a velocity exceeding the speed of sound in the unreacted material. A... [Pg.10]

COSILAB Combustion Simulation Software is a set of commercial software tools for simulating a variety of laminar flames including unstrained, premixed freely propagating flames, unstrained, premixed burner-stabilized flames, strained premixed flames, strained diffusion flames, strained partially premixed flames cylindrical and spherical symmetrical flames. The code can simulate transient spherically expanding and converging flames, droplets and streams of droplets in flames, sprays, tubular flames, combustion and/or evaporation of single spherical drops of liquid fuel, reactions in plug flow and perfectly stirred reactors, and problems of reactive boundary layers, such as open or enclosed jet flames, or flames in a wall boundary layer. The codes were developed from RUN-1DL, described below, and are now maintained and distributed by SoftPredict. Refer to the website http //www.softpredict.com/cms/ softpredict-home.html for more information. [Pg.755]

Hydrolysis of the lactone of y-hydroxystearic acid, which is a condensed or liquid-expanded film according to temperature, to the free hydroxy-acid, occurs in films on solutions of caustic soda.4 As the acid on the alkaline solution forms a gaseous film the area increases very much during the hydrolysis, and the course of the reaction may be followed by either pressure or potential measurements. The rate of reaction is proportional to the concentration of caustic soda if this and the surface pressure are kept constant the reaction appears unimolecular, with an energy of activation of 12,500 calories per gm. molecule, which is within experimental error of the energy of activation of hydrolysis by the alcoholate ion in bulk solution. [Pg.96]

Photoreactioirs in monolayers are usually indicated by changes in the I1-A-isodrerms of the amphiphiles. Monolayers of most of the diyite surfactants exhibit a film contraction upon exposure to UV-light. While the amphiphiles are highly reactive in the solid-condensed state, no reaction occurs in the liquid-expanded state... [Pg.104]

The photoinactivity of BLM s is likely due to the presence of the molecules in a liquid-expanded state, which is too disordered to allow a topochemical reaction. Similar attempts to polymerize diaoetylene derivatives in the liquid crystalline state or in micellar dispersions failed for the same reason... [Pg.122]

Liquid sulfur dioxide expands by ca 10% when warmed from 20 to 60°C under pressure. Pure liquid sulfur dioxide is a poor conductor of electricity, but high conductivity solutions of some salts in sulfur dioxide can be made (216). Liquid sulfur dioxide is only slightly miscible with water. The gas is soluble to the extent of 36 volumes pet volume of water at 20°C, but it is very soluble (several hundred volumes per volume of solvent) in a number of organic solvents, eg, acetone, other ketones, and formic acid. Sulfur dioxide is less soluble in nonpolar solvents (215,217,218). The use of sulfur dioxide as a solvent and reaction medium has been reviewed (216,219). [Pg.144]

The field of reaction chemistry in ionic liquids was initially confined to the use of chloroaluminate(III) ionic liquids. With the development of neutral ionic liquids in the mid-1990s, the range of reactions that can be performed has expanded rapidly. In this chapter, reactions in both chloroaluminate(III) ionic liquids and in similar Lewis acidic media are described. In addition, stoichiometric reactions, mostly in neutral ionic liquids, are discussed. Review articles by several authors are available, including Welton [1] (reaction chemistry in ionic liquids), Holbrey [2] (properties and phase behavior), Earle [3] (reaction chemistry in ionic liquids), Pagni [4] (reaction chemistry in molten salts), Rooney [5] (physical properties of ionic liquids), Seddon [6, 7] (chloroaluminate(III) ionic liquids and industrial applications), Wasserscheid [8] (catalysis in ionic liquids), Dupont [9] (catalysis in ionic liquids) and Sheldon [10] (catalysis in ionic liquids). [Pg.174]

Stoichiometric - or, more simply, non-catalytic - reactions are an important and rapidly expanding area of research in ionic liquids. This section deals with reactions that consume the ionic liquid (or molten salt) or use the ionic liquid as a solvent. [Pg.175]

The controlled synthesis of polymers, as opposed to their undesired formation, is an area that has not received much academic interest. Most interest to date has been commercial, and focused on a narrow area the use ofchloroaluminate(III) ionic liquids for cationic polymerization reactions. The lack of publications in the area, together with the lack of detailed and useful synthetic information in the patent literature, places hurdles in front of those with limited loiowledge of ionic liquid technology who wish to employ it for polymerization studies. The expanding interest in ionic liquids as solvents for synthesis, most notably for the synthesis of discrete organic molecules, should stimulate interest in their use for polymer science. [Pg.333]

The combustion process is carried out in a thrust chamber or a motor case, and the reaction products are momentarily contained therein. The newly formed species are heterogeneous in composition and involve a wide variety of low molecular weight products. The temperature of these products is generally high, and it ranges from about 2,000°F (1,100°C) in gas generators to well over 8,000°F in advanced liquid propellant engines. The combustion products leave the chamber and are directed and expanded in a nozzle to obtain velocities from about 5,000 to 14,000 ft/sec. [Pg.122]

Again, if we consider the initial substances in the state of liquids or solids, these will have a definite vapour pressure, and the free energy changes, i.e., the maximum work of an isothermal reaction between the condensed forms, may be calculated by supposing the requisite amounts drawn off in the form of saturated vapours, these expanded or compressed to the concentrations in the equilibrium box, passed into the latter, and the products then abstracted from the box, expanded to the concentrations of the saturated vapours, and finally condensed on the solids or liquids. Since the changes of volume of the condensed phases are negligibly small, the maximum work is again ... [Pg.333]

Gas-expanded liquids (GXLs) are emerging solvents for environmentally benign reactive separation (Eckert et al., op. cit.). GXLs, obtained by mixing supercritical CO2 with normal liquids, show intermediate properties between normal liquids and SCFs both in solvation power and in transport properties and these properties are highly tunable by simple pressure variations. Applications include chemical reactions with improved transport, catalyst recycling, and product separation. [Pg.18]


See other pages where Liquid-expanded reactions is mentioned: [Pg.60]    [Pg.229]    [Pg.132]    [Pg.146]    [Pg.1947]    [Pg.278]    [Pg.430]    [Pg.395]    [Pg.175]    [Pg.1947]    [Pg.229]    [Pg.229]    [Pg.118]    [Pg.133]    [Pg.60]    [Pg.1010]    [Pg.682]    [Pg.74]    [Pg.169]    [Pg.208]    [Pg.783]    [Pg.311]    [Pg.73]    [Pg.56]    [Pg.865]    [Pg.137]    [Pg.293]    [Pg.347]    [Pg.348]    [Pg.575]    [Pg.120]    [Pg.237]    [Pg.257]   
See also in sourсe #XX -- [ Pg.151 ]




SEARCH



Liquid-expanded

Reaction expander

© 2024 chempedia.info