Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Catalysts ionic

Chromic Acid Electrolysis. Alternatively, as shown in Figure 1, chromium metal may be produced electrolyticaUy or pyrometaUurgicaUy from chromic acid, CrO, obtained from sodium dichromate by any of several processes. Small amounts of an ionic catalyst, specifically sulfate, chloride, or fluoride, are essential to the electrolytic production of chromium. Fluoride and complex fluoride catalyzed baths have become especially important in recent years. The cell conditions for the chromic acid process are given in Table 7. [Pg.118]

Low pressure polymerization via ionic catalysts, using Ziegler catalysts (aluminum alkyls and titanium haUdes). [Pg.432]

It has not been found possible to prepare high polymers from a-methylstyrene by free-radical methods and ionic catalysts are used. The reaction may be carried out at about -60°C in solution. [Pg.453]

The products betu a strong formal resemblance to styrene and may be polymerised. For commercial purposes the monomers are not separated but are polymerised in situ in the crude naphtha, sulphuric acid acting as an ionic catalyst to give polymers with a degree of polymerisation of 20-25. [Pg.471]

Since no special ligand design is usually required to dissolve transition metal complexes in ionic liquids, the application of ionic ligands can be an extremely useful tool with which to immobilize the catalyst in the ionic medium. In applications in which the ionic catalyst layer is intensively extracted with a non-miscible solvent (i.e., under the conditions of biphasic catalysis or during product recovery by extraction) it is important to ensure that the amount of catalyst washed from the ionic liquid is extremely low. Full immobilization of the (often quite expensive) transition metal catalyst, combined with the possibility of recycling it, is usually a crucial criterion for the large-scale use of homogeneous catalysis (for more details see Section 5.3.5). [Pg.214]

The first example of homogeneous transition metal catalysis in an ionic liquid was the platinum-catalyzed hydroformylation of ethene in tetraethylammonium trichlorostannate (mp. 78 °C), described by Parshall in 1972 (Scheme 5.2-1, a)) [1]. In 1987, Knifton reported the ruthenium- and cobalt-catalyzed hydroformylation of internal and terminal alkenes in molten [Bu4P]Br, a salt that falls under the now accepted definition for an ionic liquid (see Scheme 5.2-1, b)) [2]. The first applications of room-temperature ionic liquids in homogeneous transition metal catalysis were described in 1990 by Chauvin et al. and by Wilkes et ak. Wilkes et al. used weekly acidic chloroaluminate melts and studied ethylene polymerization in them with Ziegler-Natta catalysts (Scheme 5.2-1, c)) [3]. Chauvin s group dissolved nickel catalysts in weakly acidic chloroaluminate melts and investigated the resulting ionic catalyst solutions for the dimerization of propene (Scheme 5.2-1, d)) [4]. [Pg.214]

BMIM][PFg] as co-solvent during distillative product isolation - apparatus for distillative product isolation from the ionic catalyst layer. [Pg.218]

The first successful hydrogenation reactions in ionic liquids were studied by the groups of de Souza [45] and Chauvin [46] in 1995. De Souza et al. investigated the Rh-catalyzed hydrogenation of cyclohexene in l-n-butyl-3-methylimidazolium ([BMIM]) tetrafluoroborate. Chauvin et al. dissolved the cationic Osborn complex [Rh(nbd)(PPh3)2][PFg] (nbd = norbornadiene) in ionic liquids with weakly coordinating anions (e.g., [PFg] , [BFJ , and [SbF ] ) and used the obtained ionic catalyst solutions for the biphasic hydrogenation of 1-pentene as seen in Scheme 5.2-7. [Pg.229]

Although the reactants have only limited solubility in the catalyst phase, the rates of hydrogenation in [BMIM][SbFg] are almost five times faster than for the comparable reaction in acetone. All ionic catalyst solutions tested could be reused repeatedly. The loss of rhodium through leaching into the organic phase lay below the detection limit of 0.02 %. These results are of general importance for the field of... [Pg.229]

Both reactions were carried out under two-phase conditions with the help of an additional organic solvent (such as iPrOH). The catalyst could be reused with the same activity and enantioselectivity after decantation of the hydrogenation products. A more recent example, again by de Souza and Dupont, has been reported. They made a detailed study of the asymmetric hydrogenation of a-acetamidocin-namic acid and the kinetic resolution of methyl ( )-3-hydroxy-2-methylenebu-tanoate with chiral Rh(I) and Ru(II) complexes in [BMIM][BF4] and [BMIM][PFg] [55]. The authors described the remarkable effects of the molecular hydrogen concentration in the ionic catalyst layer on the conversion and enantioselectivity of these reactions. The solubility of hydrogen in [BMIM][BF4] was found to be almost four times higher than in [BMIM][PFg]. [Pg.231]

Ley et al. reported oxidation of alcohols catalyzed by an ammonium perruthenate catalyst dissolved in [NEtJBr and [EMIM][PFg] [60]. Oxygen or N-methylmorpholine N-oxide is used as the oxidant and the authors describe easy product recovery by solvent extraction and mention the possibility of reusing the ionic catalyst solution. [Pg.233]

The authors describe a clear enhancement of the catalyst activity by the addition of the ionic liquid even if the reaction medium consisted mainly of CH2CI2. In the presence of the ionic liquid, 86 % conversion of 2,2-dimethylchromene was observed after 2 h. Without the ionic liquid the same conversion was obtained only after 6 h. In both cases the enantiomeric excess was as high as 96 %. Moreover, the ionic catalyst solution could be reused several times after product extraction, although the conversion dropped from 83 % to 53 % after five recycles this was explained, according to the authors, by a slow degradation process of the Mn complex. [Pg.233]

Despite the limited solubility of 1-octene in the ionic catalyst phase, a remarkable activity of the platinum catalyst was achieved [turnover frequency (TOP) = 126 h ]. However, the system has to be carefully optimized to avoid significant formation of hydrogenated by-product. Detailed studies to identify the best reaction conditions revealed that, in the chlorostannate ionic liquid [BMIM]Cl/SnCl2 [X(SnCl2) = 0.55],... [Pg.234]

The reaction was carried out in an ionic liquid/toluene biphasic system, which allowed easy product recovery from the catalyst by decantation. However, attempts to recycle the ionic catalyst phase resulted in significant catalyst deactivation after only the third recycle. [Pg.244]

To produce reliable data on the lifetime and overall activity of the ionic catalyst system, a loop reactor was constructed and the reaction was carried out in continuous mode [105]. Some results of these studies are presented in Section 5.3, together with much more detailed information about the processing of biphasic reactions with an ionic liquid catalyst phase. [Pg.248]

Obviously, the ionic liquid s ability to dissolve the ionic catalyst complex, in combination with low solvent nucleophilicity, opens up the possibility for biphasic processing. Furthermore it was found that the biphasic reaction mode in this specific reaction resulted in improved catalytic activity and selectivity and in enhanced catalyst lifetime. [Pg.250]

It is noteworthy that the best results could be obtained only with very pure ionic liquids and by use of an optimized reactor set-up. The contents of halide ions and water in the ionic liquid were found to be crucial parameters, since both impurities poisoned the cationic catalyst. Furthermore, the catalytic results proved to be highly dependent on all modifications influencing mass transfer of ethylene into the ionic catalyst layer. A 150 ml autoclave stirred from the top with a special stirrer... [Pg.250]

Finally, it was possible to demonstrate that the ionic catalyst solution can, in principle, be recycled. By repetitive use of the ionic catalyst solution, an overall activity of 61,106 mol ethylene converted per mol catalyst could be achieved after two recycle runs. [Pg.251]

Obviously, there are many good reasons to study ionic liquids as alternative solvents in transition metal-catalyzed reactions. Besides the engineering advantage of their nonvolatile natures, the investigation of new biphasic reactions with an ionic catalyst phase is of special interest. The possibility of adjusting solubility properties by different cation/anion combinations permits systematic optimization of the biphasic reaction (with regard, for example, to product selectivity). Attractive options to improve selectivity in multiphase reactions derive from the preferential solubility of only one reactant in the catalyst solvent or from the in situ extraction of reaction intermediates from the catalyst layer. Moreover, the application of an ionic liquid catalyst layer permits a biphasic reaction mode in many cases where this would not be possible with water or polar organic solvents (due to incompatibility with the catalyst or problems with substrate solubility, for example). [Pg.252]

A similar catalytic dimerization system has been investigated [40] in a continuous flow loop reactor in order to study the stability of the ionic liquid solution. The catalyst used is the organometallic nickel(II) complex (Hcod)Ni(hfacac) (Hcod = cyclooct-4-ene-l-yl and hfacac = l,l,l,5,5,5-hexafluoro-2,4-pentanedionato-0,0 ), and the ionic liquid is an acidic chloroaluminate based on the acidic mixture of 1-butyl-4-methylpyridinium chloride and aluminium chloride. No alkylaluminium is added, but an organic Lewis base is added to buffer the acidity of the medium. The ionic catalyst solution is introduced into the reactor loop at the beginning of the reaction and the loop is filled with the reactants (total volume 160 mL). The feed enters continuously into the loop and the products are continuously separated in a settler. The overall activity is 18,000 (TON). The selectivity to dimers is in the 98 % range and the selectivity to linear octenes is 52 %. [Pg.275]

However, attempts to reuse the ionic catalyst solution in consecutive batches failed. While the products could readily be isolated after the reaction by extraction with SCCO2, the active nickel species deactivated rapidly within three to four batch-wise cycles. The fact that no such deactivation was observed in later experiments with the continuous flow apparatus described below (see Figure 5.4-2) clearly indicate the deactivation of the chiral Ni-catalyst being mainly related to the instability of the active species in the absence of substrate. [Pg.286]

In the continuous hydrovinylation experiments, the ionic catalyst solution was placed in the reactor R, where it was in intimate contact with the continuous reaction phase entering from the bottom (no stirring was used in these experiments). The reaction phase was made up in the mixer from a pulsed flow of ethylene and a continuous flow of styrene and compressed CO2. [Pg.286]

In this book we have decided to concentrate on purely synthetic applications of ionic liquids, just to keep the amount of material to a manageable level. FFowever, we think that synthetic and non-synthetic applications (and the people doing research in these areas) should not be treated separately for a number of reasons. Each area can profit from developments made in the other field, especially concerning the availability of physicochemical data and practical experience of development of technical processes using ionic liquids. In fact, in all production-scale chemical reactions some typically non-synthetic aspects (such as the heat capacity of the ionic liquid or product extraction from the ionic catalyst layer) have to be considered anyway. The most important reason for close collaboration by synthetic and non-synthetic scientists in the field of ionic liquid research is, however, the fact that in both areas an increase in the understanding of the ionic liquid material is the key factor for successful future development. [Pg.351]

One of the setereoisomers formed, commercially knowm as gammexane, is an insectiside, which was once quite popular. These addition reactions are initiated by radicals. In the presence of ionic catalysts such as FeCl3, substitution reactions occur instead of addition. [Pg.369]

Figure 6.3. Fluorous soluble ionic catalysts for the hydrogenation of 1-octene.[30]... Figure 6.3. Fluorous soluble ionic catalysts for the hydrogenation of 1-octene.[30]...
The possibility of adjusting solubility properties is of particular importance for liquid-liquid biphasic catalysis. Liquid-liquid catalysis can be realised when the ionic liquid is able to dissolve the catalyst, especially if it displays partial solubility of the substrates and poor solubility of the reaction products. Under these conditions, the product phase, which also contains the unconverted reactants, is removed by simple phase decantation. The ionic liquid containing the catalyst can then be recycled. In such a scenario the ionic catalyst solution may be seen as part of the capital investment for a potential technical process (in an ideal case) or at least as a working solution (only a small amount has to be replaced after a certain time of application). A crucial aspect of this concept is the immobilisation of the transition metal catalyst in the ionic liquid. While most transition metal catalysts easily dissolve in an ionic liquid without any special ligand design, ionic ligand systems have been applied with great success to... [Pg.187]


See other pages where Catalysts ionic is mentioned: [Pg.73]    [Pg.221]    [Pg.230]    [Pg.231]    [Pg.237]    [Pg.238]    [Pg.241]    [Pg.243]    [Pg.246]    [Pg.246]    [Pg.247]    [Pg.253]    [Pg.253]    [Pg.281]    [Pg.283]    [Pg.283]    [Pg.284]    [Pg.288]    [Pg.193]    [Pg.20]    [Pg.70]    [Pg.40]    [Pg.61]    [Pg.192]    [Pg.192]   
See also in sourсe #XX -- [ Pg.198 ]

See also in sourсe #XX -- [ Pg.101 ]




SEARCH



Activation of a transition metal catalyst in ionic liquids

Active catalysts, ionic tagging

Application of Metal Nanoparticle Catalysts in Ionic Liquids for Energy- and Environment-Related Systems

Biphasic ionic liquid-supported catalyst

Catalyst additive 353 - ionic

Catalyst ionically-bonded

Catalyst neutral supported ionic liquid

Catalyst supported ionic liquid phase (SILP

Catalysts in ionic liquids

Catalysts ionic hquid-water

Catalysts ionic liquid

Catalysts ionic liquid biomass

Catalysts ionic liquid-palladium

Catalysts ionic liquid-water

Catalysts, also ionic liquids

Catalysts, general ionic crystal

Catalytic Ionic Hydrogenations With Mo and W Catalysts

Coupling reactions with supported ionic liquid catalysts

Different Technical Solutions to Catalyst Separation through the Use of Ionic Liquids

Immobilization of Catalysts in Ionic Liquids

Ionic Liquids, Catalyst Recycle, Selectivity, and Product Separation

Ionic catalyst activation

Ionic catalyst complex

Ionic cationic-functionalized catalysts

Ionic conjugate catalysts

Ionic crystal catalysts

Ionic imidazolium-tagged catalysts

Ionic liquid as solvent and co-catalyst

Ionic liquid as solvent and transition metal catalyst

Ionic liquid catalyst carriers

Ionic liquid-supported catalyst

Ionic liquid-supported synthesis metal catalysts

Ionic liquids as catalysts

Ionic liquids immobilized catalysts, ester

Ionic liquids tagged organic catalysts

Ionic neutral catalyst systems

Meso-ionic compounds Metal catalysts, action on pyridines

Metal complex catalysts chloroaluminate ionic liquids

Neutral Ionic Liquids as Catalysts

Reactions with Supported Ionic Liquid Catalysts

Solid catalyst with ionic liquid layer

Solid catalyst with ionic liquid layer system

Solid catalysts with ionic liquid layer (SCILL

Solid catalysts with ionic liquid layer (SCILL hydrogenation

Supported Catalysts Containing Ionic Media

Supported Ionic Liquid Phase Catalysts with Supercritical Fluid Flow

Supported ionic liquid catalysts (SILC)

Supported ionic liquid phase (SILP) catalysts incorporating metal complexes

Supported ionic liquid phase catalyst

© 2024 chempedia.info