Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interfacial processes electrocatalysis

It is well known that the maximum efficiency of electrochemical devices depends upon electrochemical thermodynamics, whereas real efficiency depends upon the electrode kinetics. To understand and control electrode reactions and the related parameters at an electrode and solution interface, a systematic study of the kinetics of electrode reactions is required. When ILs are used as solvents and electrolytes, many oftheelectrochemical processes will be differentandsomenewelectrochemical processes may also occur. For example, the properties of the electrode/electrolyte interface often dictate the sensitivity, specificity, stability, and response time, and thus the success or failure of the electrochemical detection technologies. The IL/electrode interface properties will determine many analytical parameters for sensor applications. Thus, the fundamentals of electrochemical processes in ILs need to be studied in order to have sensor developments as well as many other applications such as electrocatalysis, energy storage, and so on. Based on these insights, this chapter has been arranged into three parts (1) Fundamentals of electrode/electrolyte interfacial processes in ILs (2) Experimental techniques for the characterization of dynamic processes at the interface of electrodes and IL electrolytes and (3) Sensors based on these unique electrode/IL interface properties. And in the end, we wiU summarize the future directions in fundamental and applied study of IL-electrode interface properties for sensor applications. [Pg.8]

The changes in the potential profile of the interfacial region because specific adsorption do indeed affect the electrode kinetics of charge transfer processes, particularly when these have an inner sphere character [13, 26] (see Fig. 1.12). When this influence leads to an improvement of the current response of these processes, the global effect is called electrocatalysis. ... [Pg.26]

Phenomena that arise in these materials include conduction processes, mass transport by convection, potential field effects, electron or ion disorder, ion exchange, adsorption, interfacial and colloidal activity, sintering, dendrite growth, wetting, membrane transport, passivity, electrocatalysis, electrokinetic forces, bubble evolution, gaseous discharge (plasma) effects, and many others. [Pg.25]

Interfacial structure The role of electrochemical phenomena at interfaces between ionic, electronic, photonic, and dielectric materials is reviewed. Also reviewed are opportunities for research concerning microstructure of solid surfaces, the influence of the electric field on electrochemical processes, surface films including corrosion passivity, electrocatalysis and adsorption, the evolution of surface shape, and self-assembly in supramolecular domains. [Pg.112]

If a catalytic reaction of electron or ion transfer takes place at the oil/water interface between reagents located in two different contacting phases, we have deal with an example of interfacial catalysis discovered by Volkov and Kharkats [4—7]. The interface itself can serve as a catalyst for heterogeneous charge-transfer reactions. If the interfacial catalysis requires an electrical field, the reaction can take place at the interface between two immiscible electrolyte solutions having a fixed interfacial potential, a process called interfacial electrocatalysis. [Pg.25]

The development of membranes for fuel cells is a highly complex task. The primary functionalities, (i) transport of protons and (ii) separation of reactants and electrons, have to be provided and sustained for the required operating time. Optimization of the composition and structure of the material to maximize conductivity and mechanical robustness involves careful balancing of synthesis and process parameters. The ultimate membrane qualification test is the fuel cell experiment. It is evident that the membrane is not a stand-alone component, but is combined with the electrodes in the membrane electrode assembly (MEA). Interfacial properties, influence on anode and cathode electrocatalysis, and water management are the key aspects to be considered and optimized in this ensemble. [Pg.13]


See other pages where Interfacial processes electrocatalysis is mentioned: [Pg.358]    [Pg.115]    [Pg.272]    [Pg.586]    [Pg.203]    [Pg.944]    [Pg.102]    [Pg.1159]    [Pg.684]    [Pg.983]    [Pg.940]    [Pg.127]    [Pg.1105]    [Pg.147]    [Pg.452]    [Pg.454]   


SEARCH



Electrocatalysis

Interfacial processes

© 2024 chempedia.info