Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Detectors infrared spectroscopy

Additional detectors currently available use other technologies such as electrochemical detectors for blister, nerve, blood, and choking agents, and infrared spectroscopy detectors or photo ionization detectors for the detection of blister and nerve... [Pg.163]

Spectroscopy. Infrared spectroscopy (48) permits stmctural definition, eg, it resolves the 2,2 - from the 2,4 -methylene units in novolak resins. However, the broad bands and severely overlapping peaks present problems. For uncured resins, nmr rather than ir spectroscopy has become the technique of choice for microstmctural information. However, Fourier transform infrared (ftir) gives useful information on curing phenoHcs (49). Nevertheless, ir spectroscopy continues to be used as one of the detectors in the analysis of phenoHcs by gpc. [Pg.299]

The thin-layer technique (CA 60, 6691) utilizes aliquots of proplnt ether extract (I) and the ether soln (II) of a known mixt. II consists of nitrates of glycerol and glycol, di-Bu or di-Et phthalates, Et or Me centralites, DNT, and diphenylamine. The chromatoplates are made of 85 15 silica gel and plaster of Paris. These plates, containing spots of I and 11, are developed with 1 1 C6H6-petroleum ether, then sprayed with specific detectors by color. The method is much quicker and easier than chemical analysis and simpler than infrared spectroscopy and column chromatography... [Pg.945]

Detection in SFC can be achieved in the condensed phase using optical detectors similar to those used in liquid chromatography or in the gas phase using detectors similar to those used in gas chromatography. Spectroscopic detectors, such as mass spectrometry and Fourier transform infrared spectroscopy, are relatively easily interfaced to SFC compared to the problems observed with liquid mobile phases (see Chapter 9). The range of available detectors for SFC is considered one of its strengths. [Pg.837]

Perhaps the most revolutionary development has been the application of on-line mass spectroscopic detection for compositional analysis. Polymer composition can be inferred from column retention time or from viscometric and other indirect detection methods, but mass spectroscopy has reduced much of the ambiguity associated with that process. Quantitation of end groups and of co-polymer composition can now be accomplished directly through mass spectroscopy. Mass spectroscopy is particularly well suited as an on-line GPC technique, since common GPC solvents interfere with other on-line detectors, including UV-VIS absorbance, nuclear magnetic resonance and infrared spectroscopic detectors. By contrast, common GPC solvents are readily adaptable to mass spectroscopic interfaces. No detection technique offers a combination of universality of analyte detection, specificity of information, and ease of use comparable to that of mass spectroscopy. [Pg.375]

Despite the considerable amount of information that has been garnered from more traditional methods of study it is clearly desirable to be able to generate, spectroscopically characterize and follow the reaction kinetics of coordinatively unsaturated species in real time. Since desired timescales for reaction will typically be in the microsecond to sub-microsecond range, a system with a rapid time response will be required. Transient absorption systems employing a visible or UV probe which meet this criterion have been developed and have provided valuable information for metal carbonyl systems [14,15,27]. However, since metal carbonyls are extremely photolabile and their UV-visible absorption spectra are not very structure sensitive, the preferred choice for a spectroscopic probe is time resolved infrared spectroscopy. Unfortunately, infrared detectors are enormously less sensitive and significantly slower... [Pg.86]

Electrically modulated infrared spectroscopy, ( EMIRS). In all three external reflectance approaches the signal processing technique serves two purposes (a) to remove the contributions to the reflected ray that do not change, e.g. the detector response, the source emission envelope, the solvent,... [Pg.103]

Acrylonitrile in both biological and environmental samples is most commonly determined by gas chromatography with a nitrogen-phosphorus detector (GC/NPD) (Page 1985), gas chromatography/flame ionization detection (GC/FID) (EPA 1982a), or gas chromatography/mass spectroscopy (GC/MS) (Anderson and Harland 1980). Infrared spectroscopy (Jacobs and Syrjala... [Pg.90]

Rasmussen [82] describes a gas chromatographic analysis and a method for data interpretation that he has successfully used to identify crude oil and bunker fuel spills. Samples were analysed using a Dexsil-300 support coated open tube (SCOT) column and a flame ionisation detector. The high-resolution chromatogram was mathematically treated to give GC patterns that were a characteristic of the oil and were relatively unaffected by moderate weathering. He compiled the GC patterns of 20 crude oils. Rasmussen [82] uses metal and sulfur determinations and infrared spectroscopy to complement the capillary gas chromatographic technique. [Pg.389]

Chemicals used in this study were obtained from Aldrich Chemical Company. 1H NMR spectra were obtained on a Varian EM-360, 13C NMR spectra were obtained on a JEOL-FX-60Q or a GE QE-300. An Analect FX-6200 FT-IR spectrometer was used for infrared spectroscopy and a Hewlett-Packard Model 5980 with a model 5970 mass-selective detector was used for GC-MS. TGA measurements were performed on a Perkin-Elmer TGA-7 instrument. HPLC measurements were obtained using a Waters Instrument. [Pg.179]

Miniaturized chemical analysis systems have been developed for most macroscopic counterparts (Dittrich et al. 2006). The availability of optical fibers, light sources, and detectors in the visible UV and near-infrared (NIR) wavelengths makes it possible to integrate spectroscopic measurements in microreactors (Lobbecke et al. 2005). Fourier transform infrared spectroscopy (FTIR) is an efficient, broadly applicable... [Pg.68]

A Fourier transform infrared spectroscopy spectrometer consists of an infrared source, an interference modulator (usually a scanning Michelson interferometer), a sample chamber and an infrared detector. Interference signals measured at the detector are usually amplified and then digitized. A digital computer initially records and then processes the interferogram and also allows the spectral data that results to be manipulated. Permanent records of spectral data are created using a plotter or other peripheral device. [Pg.31]

Non-specific sum parameter analysis [12,13], which is still used today, failed [14,15] in the analyses of some of these compounds. Chromatographic methods in combination with non-substance specific detectors, e.g. colorimetric and photometric [5] or with substance specific detectors such as IR (infrared spectroscopy), NMR (nuclear magnetic resonance spectroscopy) or MS (mass spectrometry), are applied increasingly nowadays. [Pg.257]

Infrared spectroscopy is often used for qualitative analysis, and its powerful selectivity means that it can be used as a detector. However, the absorption of the eluent molecules, particularly in reversed-phase separations, often interferes with the detection of analytes. The infrared absorption detector therefore requires mechanical assistance to eliminate the solvent or needs powerful computer assistance to eliminate the background signal. [Pg.20]

Other methods for the determination of aromatics in naphtha include a method (ASTM D5580) using a flame ionization detector and methods that use combinations of gas chromatography and Fourier transform infrared spectroscopy (GC-FTIR) (ASTM D5986) and gas chromatography and mass spectrometry (GC-MS) (ASTM D5769). [Pg.263]

It is a commonplace that FTIR-based analyzers are the predominant technology for mid-infrared applications. This arises from a unique tie-in between the inherent advantages of the FTIR method and serious limitations in the mid-infrared range. The most serious problem for mid-infrared spectroscopy is the very low emissivity of mid-infrared sources combined with the low detectivity of mid-infrared thermal detectors. [Pg.129]

All too frequently, researchers perform experiments beyond the means of the spectrometer used. The most common problem involves concentrations exceeding the linear response limits of the spectrometer. When this happens, solution of Eq. (2) becomes intractable. The most common mistake in infrared spectroscopy is when samples with absorbance greater than ca. 2-3 are measured with a DGTS detector [56]. At this point, the response of the spectrometer is no longer linear, and quantitative information is no longer accessible. The same type of situation exists in NMR, except it is perhaps a little more severe. The difficulties encountered when performing quantitative NMR work are well known [57, 58]. Most other types of spectrometers have similar limitations. [Pg.166]

Deconvolution of spectra, such as infrared absorption spectra, provides researchers with a tool that they can use to carry out a particular experiment. It provides an extra measure of flexibility in the design of experiments and in the observation process. In dispersive infrared spectroscopic systems, Blass and Halsey (1981) have shown that effective resolution-acquisitiontime trade-offs may be made, owing to the fact that dispersive infrared spectroscopy is usually detector noise limited. Acquisition rates are therefore optical throughput dependent, which is equivalent to saying that acquisition rates are resolution dependent. Blass and Halsey (1981) show that, for a constant signal-to-noise ratio,... [Pg.156]

The limiting aspect of infrared spectroscopy is the available energy per unit time. The infrared sources are black bodies and as such are hot wire emitters. Infrared detectors such as thermocouples... [Pg.693]

Several researchers have combined the separating power of supercritical fluid chromatography (SFC) with more informative spectroscopic detectors. For example, Pinkston et. al. combined SFC with a quadrupole mass spectrometer operated in the chemical ionization mode to analyze poly(dimethylsiloxanes) and derivatized oligosaccharides (7). Fourier Transform infrared spectroscopy (FTIR) provides a nondestructive universal detector and can be interfaced to SFC. Taylor has successfully employed supercritical fluid extraction (SFE)/SFC with FTIR dectection to examine propellants (8). SFC was shown to be superior over conventional gas or liquid chromatographic methods. Furthermore, SFE was reported to have several advantages over conventional liquid solvent extraction (8). Griffiths has published several... [Pg.292]


See other pages where Detectors infrared spectroscopy is mentioned: [Pg.154]    [Pg.154]    [Pg.315]    [Pg.106]    [Pg.864]    [Pg.170]    [Pg.5]    [Pg.240]    [Pg.529]    [Pg.187]    [Pg.123]    [Pg.191]    [Pg.323]    [Pg.908]    [Pg.20]    [Pg.325]    [Pg.162]    [Pg.23]    [Pg.9]    [Pg.65]    [Pg.74]    [Pg.90]    [Pg.124]    [Pg.216]    [Pg.56]    [Pg.1]    [Pg.4]    [Pg.258]   


SEARCH



Detectors infrared

Spectroscopy detectors

© 2024 chempedia.info