Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indium-silver alloys

Indium has many industrial uses for electronics and electrical applications [9] indium metal in germanium transistors indium alloys for soldering and glass sealing of electronic devices indium antimonide, arsenide, and phosphide in infrared detectors and semiconductor applications indium-silver alloys for brazing and electroplated indium metal for electrical connectors. For underground telephone cables, indium has been used to plate copper-to-aluminum connectors. About 2-5 tons of indium alloyed with silver and cadmium has been used annually in nuclear reactor control rods. [Pg.403]

In the case of the oxygen diffusion is the late-determining step. This law seems in good agreement with Rapp s results [RAP 61] concerning the oxidation of indium/silver alloys in air. [Pg.626]

Lead-tin Lead-tin-indium Lead-tin-silver alloys Lead-tin solder Lead titanate... [Pg.559]

While we have not yet carried out detailed kinetic measurements on the rate of photocorrosion, our impression is that the process is relatively insensitive to the specific composition of the strontium titanate. Trace element compositions, obtained by spark-source mass spectrometry, are presented in Table I for the four boules of n-SrTi03 from which electrodes have been cut. Photocorrosion has been observed in samples from all four boules. In all cases, the electrodes were cut to a thickness of 1-2 mm using a diamond saw, reduced under H2 at 800-1000 C for up to 16 hours, polished with a diamond paste cloth, and etched with either hot concentrated nitric acid or hot aqua regia. Ohmic contacts were then made with gallium-indium eutectic alloy, and a wire was attached using electrically conductive silver epoxy prior to mounting the electrode on a Pyrex support tube with either epoxy cement or heat-shrinkable Teflon tubing. [Pg.193]

In addition to the metals listed above, many alloys are commercially electroplated brass, bronze, many gold alloys, lead—tin, nickel—iron, nickel—cobalt, nickel—phosphorus, tin—nickel, tin—zinc, zinc—nickel, zinc—cobalt, and zinc—iron. Electroplated alloys in lesser use include lead—indium, nickel—manganese, nickel—tungsten, palladium alloys, silver alloys, and zinc—manganese. Whereas tertiary and many other alloys can feasibly be electroplated, these have not found commercial applications. [Pg.143]

Because low-melting-point silver-indium-cadmium alloys are often employed in PWR control rods, the possibility exists for formation of significant molten quantities of these materials at the temperatures attained during Phase 2. It is uncertain when, and how coherently, such melts might move through the core region, before contacting residual water or core support structures. ... [Pg.312]

Alloys suitable for castings that ate to be bonded to porcelain must have expansion coefficients matching those of porcelain as well as soHdus temperatures above that at which the ceramic is fired. These ate composed of gold and palladium and small quantities of other constituents silver, calcium, iron, indium, tin, iridium, rhenium, and rhodium. The readily oxidi2able components increase the bond strength with the porcelain by chemical interaction of the oxidi2ed species with the oxide system of the enamel (see Dental materials). [Pg.384]

The abundance of indium in the earth s cmst is probably about 0.1 ppm, similat to that of silver. It is found in trace amounts in many minerals, particulady in the sulfide ores of zinc and to a lesser extent in association with sulfides of copper, tin, and lead. Indium follows zinc through flotation concentration, and commercial recovery of the metal is achieved by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting and associated lead (qv) and copper (qv) smelting (see Metallurgy, EXTRACTIVE Zinc and zinc alloys). [Pg.79]

The fourth component is the set of control rods, which serve to adjust the power level and, when needed, to shut down the reactor. These are also viewed as safety rods. Control rods are composed of strong neutron absorbers such as boron, cadmium, silver, indium, or hafnium, or an alloy of two or more metals. [Pg.210]

The Model 412 PWR uses several control mechanisms. The first is the control cluster, consisting of a set of 25 hafnium metal rods coimected by a spider and inserted in the vacant spaces of 53 of the fuel assembhes (see Fig. 6). The clusters can be moved up and down, or released to shut down the reactor quickly. The rods are also used to (/) provide positive reactivity for the startup of the reactor from cold conditions, (2) make adjustments in power that fit the load demand on the system, (J) help shape the core power distribution to assure favorable fuel consumption and avoid hot spots on fuel cladding, and (4) compensate for the production and consumption of the strongly neutron-absorbing fission product xenon-135. Other PWRs use an alloy of cadmium, indium, and silver, all strong neutron absorbers, as control material. [Pg.217]

Solders. In spite of the wide use and development of solders for millennia, as of the mid-1990s most principal solders are lead- or tin-based alloys to which a small amount of silver, zinc, antimony, bismuth, and indium or a combination thereof are added. The principal criterion for choosing a certain solder is its melting characteristics, ie, soHdus and Hquidus temperatures and the temperature spread or pasty range between them. Other criteria are mechanical properties such as strength and creep resistance, physical properties such as electrical and thermal conductivity, and corrosion resistance. [Pg.241]

Nickel on nickel Gold on gold Platinum on platinum Copper on copper Indium on indium Lead on lead Aluminium on aluminium Silver on silver Iron on iron Tin on tin Steel on tin alloy Steel on steel Steel on Pb alloy Steel on Al. bronze Steel on cast iron Steel on brass Steel on bronze Steel on Pb. brass... [Pg.245]

Steels and austenitic stainless steels are susceptible to molten zinc, copper, lead and other metals. Molten mercury, zinc and lead attack aluminum and copper alloys. Mercury, zinc, silver and others attack nickel alloys. Other low-melting-point metals that can attack common constructional materials include tin, cadmium, lithium, indium, sodium and gallium. [Pg.895]

Of the elements commonly found in lead alloys, zinc and bismuth aggravate corrosion in most circumstances, while additions of copper, tellurium, antimony, nickel, silver, tin, arsenic and calcium may reduce corrosion resistance only slightly, or even improve it depending on the service conditions. Alloying elements that are of increasing importance are calcium especially in maintenance-free battery alloys and selenium, or sulphur combined with copper as nucleants in low antimony battery alloys. Other elements of interest are indium in anodesaluminium in batteries and selenium in chemical lead as a grain refiner ". [Pg.721]

Numerous proprietary electrolytes have been developed for the production of harder and brighter deposits. These include acid, neutral and alkaline solutions and cyanide-free formulations and the coatings produced may be essentially pure, where maximum electrical conductivity is required, or alloyed with various amounts of other precious or base metals, e.g. silver, copper, nickel, cobalt, indium, to develop special physical characteristics. [Pg.559]

The low-melting-point (157 °C), silver metal is mainly used in alloys to decrease the melting point. Combined with tin, lead, and bismuth to produce soldering metal for wide temperature ranges. The element is highly valuable in the electronics age as its unique properties are ideal for solar cells, optoelectronics, and microwave equipment. The arsenide is used in lasers and is also suitable for transistors. ITO (indium tin oxide) is a transparent semiconductor with wide application in displays, touchscreens, etc. In the household, indium as an additive prevents the tarnishing of silverware. Some electronic wristwatches contain indium batteries. [Pg.137]

Another main use is as an alloy with other metals when it will lower the melting point of the metals with which it is alloyed. Alloys of indium and silver and indium and lead have the ability to carry electricity better than pure silver and lead. [Pg.185]


See other pages where Indium-silver alloys is mentioned: [Pg.147]    [Pg.147]    [Pg.147]    [Pg.147]    [Pg.558]    [Pg.80]    [Pg.845]    [Pg.127]    [Pg.558]    [Pg.80]    [Pg.150]    [Pg.153]    [Pg.177]    [Pg.179]    [Pg.324]    [Pg.147]    [Pg.152]    [Pg.274]    [Pg.315]    [Pg.229]    [Pg.823]    [Pg.111]    [Pg.116]    [Pg.385]    [Pg.55]    [Pg.132]    [Pg.138]    [Pg.532]    [Pg.471]    [Pg.61]    [Pg.414]    [Pg.481]    [Pg.242]   
See also in sourсe #XX -- [ Pg.258 ]

See also in sourсe #XX -- [ Pg.258 ]




SEARCH



© 2024 chempedia.info