Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Concentration flotation

Calcite-dolomite collectors Recovery (%) Nb205 depressant used during CaO flotation % Nb205 in calcite concentrate Flotation pH... [Pg.113]

Table XI-1 (from Ref. 166) lists the potential-determining ion and its concentration giving zero charge on the mineral. There is a large family of minerals for which hydrogen (or hydroxide) ion is potential determining—oxides, silicates, phosphates, carbonates, and so on. For these, adsorption of surfactant ions is highly pH-dependent. An example is shown in Fig. XI-14. This type of behavior has important applications in flotation and is discussed further in Section XIII-4. Table XI-1 (from Ref. 166) lists the potential-determining ion and its concentration giving zero charge on the mineral. There is a large family of minerals for which hydrogen (or hydroxide) ion is potential determining—oxides, silicates, phosphates, carbonates, and so on. For these, adsorption of surfactant ions is highly pH-dependent. An example is shown in Fig. XI-14. This type of behavior has important applications in flotation and is discussed further in Section XIII-4.
Prior to about 1920, flotation procedures were rather crude and rested primarily on the observation that copper and lead-zinc ore pulps (crushed ore mixed with water) could be benefacted (improved in mineral content) by treatment with large amounts of fatty and oily materials. The mineral particles collected in the oily layer and thus could be separated from the gangue and the water. Since then, oil flotation has been largely replaced by froth or foam flotation. Here, only minor amounts of oil or surfactant are used and a froth is formed by agitating or bubbling air through the suspension. The oily froth or foam is concentrated in mineral particles and can be skimmed off as shown schematically in Fig. XIII-4. [Pg.472]

Fig. XIII-9. The dependence of the flotation properties of goethite on surface charge. Upper curves are potential as a function of pH at different concentrations of sodium chloride lower curves are the flotation recovery in 10 M solutions of dodecylammo-nium chloride, sodium dodecyl sulfate, or sodium dodecyl sulfonate. (From Ref. 99.)... Fig. XIII-9. The dependence of the flotation properties of goethite on surface charge. Upper curves are potential as a function of pH at different concentrations of sodium chloride lower curves are the flotation recovery in 10 M solutions of dodecylammo-nium chloride, sodium dodecyl sulfate, or sodium dodecyl sulfonate. (From Ref. 99.)...
Pressure filters can treat feeds with concentrations up to and in excess of 10% sohds by weight and having large proportions of difficult-to-handle fine particles. Typically, slurries in which the sohd particles contain 10% greater than 10 ]lni may require pressure filtration, but increasing the proportion greater than 10 ]lni may make vacuum filtration possible. The range of typical filtration velocities in pressure filters is from 0.025 to 5 m/h and dry sohds rates from 25 to 250 kg nY/h. The use of pressure filters may also in some cases, such as in filtration of coal flotation concentrates, eliminate the need for flocculation. [Pg.393]

The KDF Filter. The KDP filter (Pig. 23) (Amafilter, Holland) is based on the same principle as disk filters. It was developed for the treatment of mineral raw materials, like coal flotation concentrates or cement slurries, and can produce a filter cake of low moisture content at very high capacities, up... [Pg.405]

Flotation or froth flotation is a physicochemical property-based separation process. It is widely utilised in the area of mineral processing also known as ore dressing and mineral beneftciation for mineral concentration. In addition to the mining and metallurgical industries, flotation also finds appHcations in sewage treatment, water purification, bitumen recovery from tar sands, and coal desulfurization. Nearly one biUion tons of ore are treated by this process aimuaHy in the world. Phosphate rock, precious metals, lead, zinc, copper, molybdenum, and tin-containing ores as well as coal are treated routinely by this process some flotation plants treat 200,000 tons of ore per day (see Mineral recovery and processing). Various aspects of flotation theory and practice have been treated in books and reviews (1 9). [Pg.40]

The processes that occur in a typical flotation cell are schematically shown in Figure 5 and consist of agitation, particle—bubble coUision and attachment, flotation of particle—bubble aggregates, collection of aggregates in a froth layer at the top of the cell, removal of mineral-laden froth as concentrate, and flow of the nonfloating fraction as tailings slurry. [Pg.42]

Activators enhance the adsorption of collectors, eg, Ca " in the fatty acid flotation of siUcates at high pH or Cu " in the flotation of sphalerite, ZnS, by sulfohydryl collectors. Depressants, on the other hand, have the opposite effect they hinder the flotation of certain minerals, thus improving selectivity. For example, high pH as well as high sulfide ion concentrations can hinder the flotation of sulfide minerals such as galena (PbS) in the presence of xanthates (ROCSS ). Hence, for a given fixed collector concentration there is a fixed critical pH that defines the transition between flotation and no flotation. This is the basis of the Barsky relationship which can be expressed as [X ]j[OH ] = constant, where [A ] is the xanthate ion concentration in the pulp and [Oi/ ] is the hydroxyl ion concentration indicated by the pH. Similar relationships can be written for sulfide ion, cyanide, or thiocyanate, which act as typical depressants in sulfide flotation systems. [Pg.49]

Flotation process kinetics determine the residence time, the average time a given particle stays in the flotation pulp from the instant it enters the ceU until it exits. One way to study flotation kinetics is to record flotation recoveries as a function of time under a given set of conditions such as pulp pH, coUector concentration, particle size, etc. The data allow the derivation of an expression that describes the rate of the process. [Pg.49]

The basic flow sheet for the flotation-concentration of nonsulfide minerals is essentially the same as that for treating sulfides but the family of reagents used is different. The reagents utilized for nonsulfide mineral concentrations by flotation are usually fatty acids or their salts (RCOOH, RCOOM), sulfonates (RSO M), sulfates (RSO M), where M is usually Na or K, and R represents a linear, branched, or cycHc hydrocarbon chain and amines [R2N(R)3]A where R and R are hydrocarbon chains and A is an anion such as Cl or Br . Collectors for most nonsulfides can be selected on the basis of their isoelectric points. Thus at pH > pH p cationic surfactants are suitable collectors whereas at lower pH values anion-type collectors are selected as illustrated in Figure 10 (28). Figure 13 shows an iron ore flotation flow sheet as a representative of high volume oxide flotation practice. [Pg.50]

Water Treatment. Flotation in water treatment is used both for the removal of dissolved ions such as Cu ", Cr ", or (PO or surfactants and suspended soHds as in the case of sludge treatment. The final product in this case is purified water rather than a mineral concentrate. Furthermore, water is treated either for drinking purposes (potable water preparation) or safe disposal to the environment. [Pg.52]

The carbon black (soot) produced in the partial combustion and electrical discharge processes is of rather small particle si2e and contains substantial amounts of higher (mostly aromatic) hydrocarbons which may render it hydrophobic, sticky, and difficult to remove by filtration. Electrostatic units, combined with water scmbbers, moving coke beds, and bag filters, are used for the removal of soot. The recovery is illustrated by the BASF separation and purification system (23). The bulk of the carbon in the reactor effluent is removed by a water scmbber (quencher). Residual carbon clean-up is by electrostatic filtering in the case of methane feedstock, and by coke particles if the feed is naphtha. Carbon in the quench water is concentrated by flotation, then burned. [Pg.390]

The abundance of indium in the earth s cmst is probably about 0.1 ppm, similat to that of silver. It is found in trace amounts in many minerals, particulady in the sulfide ores of zinc and to a lesser extent in association with sulfides of copper, tin, and lead. Indium follows zinc through flotation concentration, and commercial recovery of the metal is achieved by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting and associated lead (qv) and copper (qv) smelting (see Metallurgy, EXTRACTIVE Zinc and zinc alloys). [Pg.79]

The solution leaving the flotation cell, containing about 0.4 g/L iodine, is sent to a kerosene solvent extraction process to recover the dissolved product. After neutralization with soda ash to the initial incoming alkalinity, the solution is returned to the nitrate lixiviation process. The iodine-chaiged kerosene is contacted with an acidic concentrated iodide solution containing SO2, which reduces the iodine to iodide. [Pg.362]

Second Jiltemative. The second alternative production process is shown in Figure 2. The treatment of a diluted iodate solution does not require a flotation step, because all the iodine stays in solution. Therefore only the kerosene extraction unit is used, and the final product of this plant is a concentrated iodide solution, which is used to react with the iodate mother Hquor stream of the plants using concentrated iodate solutions. [Pg.362]

Gravity concentration, ie, the separation of ore from gangue based on the differences in specific gravities, using jigs, heavy—medium separators, or spiral concentrators for example, is appHcable for lead ores. However, the predominant beneficiation technique used in modem plants is the bubble or froth flotation (qv) process (4,5). [Pg.34]

The lead concentrate from rougher flotation ceUs is upgraded by additional flotation steps. The final concentrate is dewatered by settling in thickeners to a moisture content of 50%. Vacuum filtering further decreases the moisture level to 15%. [Pg.34]


See other pages where Concentration flotation is mentioned: [Pg.378]    [Pg.394]    [Pg.169]    [Pg.378]    [Pg.78]    [Pg.275]    [Pg.130]    [Pg.438]    [Pg.409]    [Pg.168]    [Pg.378]    [Pg.394]    [Pg.169]    [Pg.378]    [Pg.78]    [Pg.275]    [Pg.130]    [Pg.438]    [Pg.409]    [Pg.168]    [Pg.111]    [Pg.177]    [Pg.263]    [Pg.143]    [Pg.450]    [Pg.222]    [Pg.40]    [Pg.41]    [Pg.44]    [Pg.45]    [Pg.49]    [Pg.49]    [Pg.49]    [Pg.50]    [Pg.51]    [Pg.173]    [Pg.435]    [Pg.414]    [Pg.543]    [Pg.34]    [Pg.220]    [Pg.162]    [Pg.174]   
See also in sourсe #XX -- [ Pg.780 ]

See also in sourсe #XX -- [ Pg.780 ]

See also in sourсe #XX -- [ Pg.6 , Pg.780 ]




SEARCH



Applications of OPCF Technology in Several Flotation Concentrators

Copper sulfide flotation concentrates

Copper sulfide flotation concentrates leaching

Dewatering flotation concentrates

Flotation concentrates

Flotation concentrates

Flotation rate, lipoprotein concentration

Flotation recovery concentration

© 2024 chempedia.info