Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indium alloys

Uses. Indium finds application in making low melting alloys the eutectic alloy indium-gallium (14.2 at.% In, 21.4 mass% In) melts at 15.3°C. In is used as an additive to solder alloys to improve malleability at low temperature and corrosion resistance it is also used in dental alloys, in the preparation of semiconductors, etc. [Pg.482]

Imbedding the grains of interest along with a suitable reference sample on the surface of the support used (epoxy. Woods alloy. Indium, etc.) before it cures/cools. Note These should all be in close proximity to each other with their locations well characterized. [Pg.211]

Intermetallic compounds with gallium are used as semiconductors. Indium is used to coat other metals to protect against corrosion, especially in engine bearings it is also a constituent of low-metal alloys used in safety sprinklers. The toxicity of thallium compounds has limited the use of the metal, but it does find use as a constituent of high-endurance alloys for bearings. [Pg.158]

Lead-tin Lead-tin-indium Lead-tin-silver alloys Lead-tin solder Lead titanate... [Pg.559]

Alloys. GaUium has complete miscibility in the hquid state with aluminum, indium, tin, and zinc. No compounds are formed. However, these binary systems form simple eutectics having the following properties ... [Pg.160]

Alloys suitable for castings that ate to be bonded to porcelain must have expansion coefficients matching those of porcelain as well as soHdus temperatures above that at which the ceramic is fired. These ate composed of gold and palladium and small quantities of other constituents silver, calcium, iron, indium, tin, iridium, rhenium, and rhodium. The readily oxidi2able components increase the bond strength with the porcelain by chemical interaction of the oxidi2ed species with the oxide system of the enamel (see Dental materials). [Pg.384]

The abundance of indium in the earth s cmst is probably about 0.1 ppm, similat to that of silver. It is found in trace amounts in many minerals, particulady in the sulfide ores of zinc and to a lesser extent in association with sulfides of copper, tin, and lead. Indium follows zinc through flotation concentration, and commercial recovery of the metal is achieved by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting and associated lead (qv) and copper (qv) smelting (see Metallurgy, EXTRACTIVE Zinc and zinc alloys). [Pg.79]

Production. Indium is recovered from fumes, dusts, slags, residues, and alloys from zinc or lead—zinc smelting. The source material itself, a reduction bullion, flue dust, or electrolytic slime intermediate, is leached with sulfuric or hydrochloric acid, the solutions are concentrated, if necessary, and cmde indium is recovered as 99+% metal. This impure indium is then refined to 99.99%, 99.999%, 99.9999%, or higher grades by a variety of classical chemical and electrochemical processes. [Pg.80]

Analysis. Indium can be detected to 0.01 ppm by spectroscopic analysis, using its characteristic lines in the indigo blue region, at wavelengths 4511.36, 4101.76, 3256.09, and 3093.36 nm. Procedures for the quantitative deterrnination of indium in ores, compounds, alloys, and for the analysis of impurities in indium metal are covered thoroughly in the Hterature (6). [Pg.80]

Uses. Indium s first commercial use was in the production of dental alloys (see Dental MATERIALS), but its first significant use was in the production of bearings for heavy-duty and high speed service (see Bearing materials). The advent of jet engines has reduced this use, but indium is still used in high performance engines. [Pg.80]

The solder and ahoy market, including low melting or fusible ahoys, is a principal user of indium (see SoLDERS AND BRAZING ALLOYS). The addition of indium results in unique properties of solders such as improved corrosion and fatigue resistance, increased hardness, and compatibhity with gold substrates. To fachitate use in various appHcations, indium and its ahoys can be easily fabricated into wine, ribbon, foil, spheres, preforms, solder paste, and powder. [Pg.80]

A low melting (5°C) gallium—indium—tin alloy has been the choice for small spiral-groove bearings in vacuum for x-ray tubes at speeds up to 7000 rpm (71). Surface tension 30 times that of oil avoids leakage of the gallium alloy from the ends of the bearings. [Pg.253]

The fourth component is the set of control rods, which serve to adjust the power level and, when needed, to shut down the reactor. These are also viewed as safety rods. Control rods are composed of strong neutron absorbers such as boron, cadmium, silver, indium, or hafnium, or an alloy of two or more metals. [Pg.210]

The Model 412 PWR uses several control mechanisms. The first is the control cluster, consisting of a set of 25 hafnium metal rods coimected by a spider and inserted in the vacant spaces of 53 of the fuel assembhes (see Fig. 6). The clusters can be moved up and down, or released to shut down the reactor quickly. The rods are also used to (/) provide positive reactivity for the startup of the reactor from cold conditions, (2) make adjustments in power that fit the load demand on the system, (J) help shape the core power distribution to assure favorable fuel consumption and avoid hot spots on fuel cladding, and (4) compensate for the production and consumption of the strongly neutron-absorbing fission product xenon-135. Other PWRs use an alloy of cadmium, indium, and silver, all strong neutron absorbers, as control material. [Pg.217]

Platiaum and its alloys are also used as biomedical electrodes, eg, platiaum—indium wires for permanent and temporary pacemaker leads and defibrillator leads. Electrophysiology catheters, which contain platinum electrodes and marker bands, have been used to map the electrical pathways of the heart so that appropriate treatment, such as a pacemaker, can be prescribed. [Pg.174]

Modifications to Precipitates. Silicon is sometimes added to Al—Cu—Mg alloys to help nucleate S precipitates without the need for cold work prior to the elevated temperature aging treatments. Additions of elements such as tin [7440-31-5] Sn, cadmium [7440-43-9] Cd, and indium [7440-74-6] In, to Al—Cu alloys serve a similar purpose for 9 precipitates. Copper is often added to Al—Mg—Si alloys in the range of about 0.25% to 1.0% Cu to modify the metastable precursor to Mg2Si. The copper additions provide a substantial strength increase. When the copper addition is high, the quaternary Al CuMg Si Q-phase must be considered and dissolved during solution heat treatment. [Pg.118]

StiU another method used to produce PV cells is provided by thin-fiLm technologies. Thin films ate made by depositing semiconductor materials on a sohd substrate such as glass or metal sheet. Among the wide variety of thin-fiLm materials under development ate amorphous siUcon, polycrystaUine sUicon, copper indium diselenide, and cadmium teUuride. Additionally, development of multijunction thin-film PV cells is being explored. These cells use multiple layers of thin-film sUicon alloys or other semiconductors tailored to respond to specific portions of the light spectmm. [Pg.104]

Solders. In spite of the wide use and development of solders for millennia, as of the mid-1990s most principal solders are lead- or tin-based alloys to which a small amount of silver, zinc, antimony, bismuth, and indium or a combination thereof are added. The principal criterion for choosing a certain solder is its melting characteristics, ie, soHdus and Hquidus temperatures and the temperature spread or pasty range between them. Other criteria are mechanical properties such as strength and creep resistance, physical properties such as electrical and thermal conductivity, and corrosion resistance. [Pg.241]

Rapp (1961) has confirmed this equation in a study of the oxidation in air of Ag-In alloys at 550°C. The reaction proceeds with tire internal formation of In203 particles over a range of indium concenuations, but at a critical mole fraction of indium in the alloy, external oxidation occurs with the growdr of a layer of In203 covering the alloy. The n airsitioir from internal to external oxidation was found by Rapp to occur at the mole fraction of indium cone-sponding to... [Pg.258]

Nickel on nickel Gold on gold Platinum on platinum Copper on copper Indium on indium Lead on lead Aluminium on aluminium Silver on silver Iron on iron Tin on tin Steel on tin alloy Steel on steel Steel on Pb alloy Steel on Al. bronze Steel on cast iron Steel on brass Steel on bronze Steel on Pb. brass... [Pg.245]


See other pages where Indium alloys is mentioned: [Pg.80]    [Pg.568]    [Pg.80]    [Pg.166]    [Pg.5663]    [Pg.80]    [Pg.568]    [Pg.80]    [Pg.166]    [Pg.5663]    [Pg.215]    [Pg.116]    [Pg.147]    [Pg.510]    [Pg.523]    [Pg.558]    [Pg.558]    [Pg.606]    [Pg.385]    [Pg.55]    [Pg.118]    [Pg.132]    [Pg.138]    [Pg.530]    [Pg.530]    [Pg.532]    [Pg.471]    [Pg.61]    [Pg.376]    [Pg.414]    [Pg.198]    [Pg.330]    [Pg.481]    [Pg.31]    [Pg.118]   
See also in sourсe #XX -- [ Pg.2 , Pg.265 ]




SEARCH



© 2024 chempedia.info