Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Manganese nickel

Cobalt, copper, molybdenum, iodine, iron, manganese, nickel, selenium, and zinc are sometimes provided to mminants. Mineral deficiency or toxicity in sheep, especially copper and selenium, is a common example of dietary mineral imbalance (21). Other elements may be required for optimal mminant performance (22). ExceUent reviews of trace elements are available (5,22). [Pg.156]

Alloying elements either enlarge the austenite field or reduce it. The former include manganese, nickel, cobalt, copper, carbon, and nitrogen and are referred to as austenite stabilizers. [Pg.386]

In addition to the metals Hsted above, many alloys ate commercially electroplated brass, bronze, many gold alloys, lead—tin, nickel—iron, nickel—cobalt, nickel—phosphoms, tin—nickel, tin—zinc, ziac-nickel, ziac-cobalt, and ziac-iron. Electroplated alloys ia lesser use iaclude lead—iadium, nickel—manganese, nickel-tuagstea, palladium alloys, silver alloys, and zinc—manganese. Whereas tertiary and many other alloys can feasibly be electroplated, these have not found commercial appHcations. [Pg.143]

Since the rate of formation of cementite is determined by nucleation, and therefore proceeds more rapidly in fine-grained steels, it follows that the T-T-T diagram will show a more rapid onset of austenite decomposition than in steels of the same composition, but a coarser grain size. The shape of the T-T-T curve is also a function of the steel composition, and is altered by the presence of alloying elements at a low concenuation. This is because the common alloying elements such as manganese, nickel and clrromium decrease... [Pg.187]

H. 8-Hydroxyquinaldine (XI). The reactions of 8-hydroxyquinaldine are, in general, similar to 8-hydroxyquinoline described under (C) above, but unlike the latter it does not produce an insoluble complex with aluminium. In acetic acid-acetate solution precipitates are formed with bismuth, cadmium, copper, iron(II) and iron(III), chromium, manganese, nickel, silver, zinc, titanium (Ti02 + ), molybdate, tungstate, and vanadate. The same ions are precipitated in ammoniacal solution with the exception of molybdate, tungstate, and vanadate, but with the addition of lead, calcium, strontium, and magnesium aluminium is not precipitated, but tartrate must be added to prevent the separation of aluminium hydroxide. [Pg.444]

Determination of titanium with tannic acid and phenazone Discussion. This method affords a separation from iron, aluminium, chromium, manganese, nickel, cobalt, and zinc, and is applicable in the presence of phosphates and silicates. Small quantities of titanium (2-50 mg) may be readily determined. [Pg.470]

Environmental hazards of batteries can be briefly summarized as follows. A battery is an electrochemical device with the ability to convert chemical energy to electrical energy to provide power to electronic devices. Batteries may contain lead, cadmium, mercury, copper, zinc, lead, manganese, nickel, and lithium, which can be hazardous when incorrectly disposed. Batteries may produce the following potential problems or hazards (a) they pollute the lakes and streams as the metals... [Pg.1225]

Many of the following powdered metals reacted violently or explosively with fused ammonium nitrate below 200°C aluminium, antimony, bismuth, cadmium, chromium, cobalt, copper, iron, lead, magnesium, manganese, nickel, tin, zinc also brass and stainless steel. Mixtures with aluminium powder are used as the commercial explosive Ammonal. Sodium reacts to form the yellow explosive compound sodium hyponitrite, and presence of potassium sensitises the nitrate to shock [1], Shock-sensitivity of mixtures of ammonium nitrate and powdered metals decreases in the order titanium, tin, aluminium, magnesium, zinc, lead, iron, antimony, copper [2], Contact between molten aluminium and the salt is violently explosive, apparently there is a considerable risk of this happening in scrap remelting [3],... [Pg.1681]

After adjusting to 2 mol 1 1 in hydrochloric acid, 500 ml of the sample is adsorbed on a column of Dowex 1-XS resin (Cl form) and elution is then effected with 2 M nitric acid. The solution is evaporated to dryness after adding 1M hydrochloric acid, and the tin is again adsorbed on the same column. Tin is eluted with 2 M nitric acid, and determined in the eluate by the spectrophotometric catechol violet method. There is no interference from 0.1 mg of aluminium, manganese, nickel, copper, zinc, arsenic, cadmium, bismuth, or uranium any titanium, zirconium, or antimony are removed by ion exchange. Filtration of the sample through a Millipore filter does not affect the results, which are in agreement with those obtained by neutron activation analysis. [Pg.224]

Warnken et al. [956] have reported an online preconcentration - ultrasonic nebulisation - ICP-MS method that achieved detection limits of 0.26,0.86,1.5, 10, and 0.44 ng/1 for manganese, nickel, copper, zinc, and lead in seawater. This online preconcentration method compares favourably to the state of-the-art off-line methods. [Pg.262]

Copper, Cobalt, Manganese, Nickel, Vanadium, Molybdenum, Cadmium, Lead, and Uranium... [Pg.263]

Chappie and Byrne [743] applied an electrothermal vaporisation inductively coupled plasma technique to the determination of copper, cobalt, manganese, nickel, and vanadium in seawater in amounts down to 3-140 ppt. [Pg.263]

Abollino et al. [690] compared cathodic stripping voltammetry and graphite furnace AAS in determination of cadmium, copper, iron, manganese, nickel, and zinc in seawater. The effects of UV irradiation, acidification, and online sample preconcentration were studied. [Pg.277]

Kingston et al. [32] preconcentrated the eight transition elements cadmium, cobalt, copper, iron, manganese, nickel, lead, and zinc from estuarine and seawater using solvent extraction/chelation and determined them at sub ng/1 levels by GFA-AS. [Pg.337]

The elements covered are aluminium, cadmium, chromium, cobalt, copper, iron, lead, manganese, nickel, vanadium, and zinc. Electrothermal atomic absorption and anodic and cathodic scanning voltammetric methods are discussed. [Pg.338]

Ellen, G., J.W. van Loon, and K. Tolsma. 1989. Copper, chromium, manganese, nickel and zinc in kidneys of cattle, pigs and sheep and in chicken livers in the Netherlands. Zeit. Lebens. Untersuchung Forschung 189 534-537. [Pg.731]

Several octahedral dihydrazine metal (II) salts of this class were prepared and thermally decomposed. The succinates and malonates of nickel and cadmium decomposed explosively [1]. A later paper on mixed metal bis-hydrazine malonates of cobalt with magnesium, manganese, nickel, zinc or cadmium recommends that decomposition, in a pre-heated crucible at 500°C, be of small quantities only. The same workers have reported exothermic decomposition of similar hydrazine complexed salts of other small organic acids. [Pg.195]

Clement, R. et al., J. Chem. Soc., Dalton Trans., 1979, 1566 When very finely divided metals (iron, manganese, nickel or zinc) are heated with elemental phosphorus and sulfur in evacuated ampoules to form the title compounds, explosions may occur, even at temperatures as low as 150-200°C. [Pg.253]

Welding Fumes, gases oxides of cadmium, chromium, fluorides, iron, manganese, nickel, nitrogen, vanadium, by-products from fluxes, coatings, electrodes... [Pg.150]

An application of industrial importance of Lewis acidic metal salts is the condensation of carboxylic diacids and diols to give polyesters. This is an acid catalysed reaction that in the laboratory is usually catalysed by protic acids. For this industrial application salts of manganese, nickel, or cobalt and the like are used. From a chemical point of view this chemistry may not be very exciting or complicated, the large scale on which it is being carried out makes it to an important industrial reaction [29],... [Pg.52]

Table 18.3 Mineral Consumption, Resources, and Value of Iron, Manganese, Nickel, Copper, Cobalt, Phosphorus and Barium. ... [Pg.449]


See other pages where Manganese nickel is mentioned: [Pg.287]    [Pg.164]    [Pg.353]    [Pg.429]    [Pg.304]    [Pg.319]    [Pg.243]    [Pg.409]    [Pg.98]    [Pg.440]    [Pg.470]    [Pg.231]    [Pg.877]    [Pg.248]    [Pg.319]    [Pg.570]    [Pg.48]    [Pg.312]    [Pg.316]    [Pg.320]    [Pg.245]    [Pg.263]    [Pg.136]    [Pg.106]    [Pg.704]    [Pg.196]    [Pg.334]    [Pg.364]   
See also in sourсe #XX -- [ Pg.43 , Pg.322 , Pg.323 , Pg.324 , Pg.325 , Pg.326 , Pg.327 ]




SEARCH



© 2024 chempedia.info