Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Immersion in Water

In the standard method, the metal enclosure (called the air chamber) used to hold the hydrocarbon vapors is immersed in water before the test, then drained but not dried. This mode of operation, often designated as the wet bomb" is stipulated for all materials that are exclusively petroleum. But if the fuels contain alcohols or other organic products soluble in water, the apparatus must be dried in order that the vapors are not absorbed by the water on the walls. This technique is called the dry bomb" it results in RVP values higher by about 100 mbar for some oxygenated motor fuels. When examining the numerical results, it is thus important to know the technique employed. In any case, the dry bomb method is preferred. [Pg.189]

Materials that typify thermoresponsive behavior are polyethylene—poly (ethylene glycol) copolymers that are used to functionalize the surfaces of polyethylene films (smart surfaces) (20). When the copolymer is immersed in water, the poly(ethylene glycol) functionaUties at the surfaces have solvation behavior similar to poly(ethylene glycol) itself. The abiUty to design a smart surface in these cases is based on the observed behavior of inverse temperature-dependent solubiUty of poly(alkene oxide)s in water. The behavior is used to produce surface-modified polymers that reversibly change their hydrophilicity and solvation with changes in temperatures. Similar behaviors have been observed as a function of changes in pH (21—24). [Pg.250]

Froth flotation (qv) is a significant use of foam for physical separations. It is used to separate the more precious minerals from the waste rock extracted from mines. This method reHes on the different wetting properties typical for the different extracts. Usually, the waste rock is preferentially wet by water, whereas the more valuable minerals are typically hydrophobic. Thus the mixture of the two powders are immersed in water containing foam promoters. Also added are modifiers which help ensure that the surface of the waste rock is hydrophilic. Upon formation of a foam by bubbling air and by agitation, the waste rock remains in the water while the minerals go to the surface of the bubbles, and are entrapped in the foam. The foam rises, bringing... [Pg.431]

In the wet system, manufacture proceeds as foUows (/) a 7—20% polyurethane solution of DMF is appHed onto a fabric and immersed in water containing 0—10% of DMF for coagulation (2) the coated fabric is washed and dried (4) the surface is finished by the dry system. For the substrate, a woven or knit fabric which has been bmshed on its surface is often used to improve appearance, resistance to grain break, and feel. [Pg.93]

Phase Inversion (Solution Precipitation). Phase inversion, also known as solution precipitation or polymer precipitation, is the most important asymmetric membrane preparation method. In this process, a clear polymer solution is precipitated into two phases a soHd polymer-rich phase that forms the matrix of the membrane, and a Hquid polymer-poor phase that forms the membrane pores. If precipitation is rapid, the pore-forming Hquid droplets tend to be small and the membranes formed are markedly asymmetric. If precipitation is slow, the pore-forming Hquid droplets tend to agglomerate while the casting solution is stiU fluid, so that the final pores are relatively large and the membrane stmcture is more symmetrical. Polymer precipitation from a solution can be achieved in several ways, such as cooling, solvent evaporation, precipitation by immersion in water, or imbibition of... [Pg.63]

Magnesium oxide is a typical acid scavenger for chlorinated mbbers. Compounds containing zinc oxide or magnesium oxide may tend to swell upon immersion in water. These inorganic salts have some water solubiHty and osmotic pressure causes the vulcanizates to imbibe water to equalize pressure (8,9). As such, vulcanizates tend to sweU more in fresh (distilled) water than in salt water. To minimize water sweU, insoluble salts such as lead oxides can be substituted. Because of the health concerns associated with lead, there is much mbber industry interest in other acid acceptors, such as synthetic... [Pg.225]

Special vinyl acetate copolymer paints have been developed with gready improved resistance to blistering or peeling when immersed in water. This property allows better cleaning and use in very humid environments. These lattices exhibit the water resistance of higher priced acryUc resins (150). VAc, vinyl chloride—ethylene terpolymers have been developed which provide the exterior resistance properties of vinyl chloride with the dexibiUty of the ethylene for exterior paint vehicles (151). [Pg.471]

Heat evolves when wool, dry mass of 1 kg, at a particular regain is immersed in water. [Pg.341]

For a fiber immersed in water, the ratio of the slopes of the stress—strain curve in these three regions is about 100 1 10. Whereas the apparent modulus of the fiber in the preyield region is both time- and water-dependent, the equiUbrium modulus (1.4 GPa) is independent of water content and corresponds to the modulus of the crystalline phase (32). The time-, temperature-, and water-dependence can be attributed to the viscoelastic properties of the matrix phase. [Pg.342]

Zeta Potential. When a textile is immersed in water a negative charge is developed on its surface. This is caked the 2eta potential. This happens even with ionic fibers in neutral dyebaths. Negatively charged dyes therefore are coulombicaUy repeUed. [Pg.351]

Water Tests. In colorfastness to water, ISO 10S-E01, the test specimen is placed in contact with the chosen adjacent fabrics, immersed in water, and placed wet between glass plates and left for 4 h at 37°C. After drying, the effect on the test specimen and stain on adjacents are assessed. The test, colorfastness to seawater, ISO 10S-E02, is the same as EOl but uses 30 g/L anhydrous sodium chloride solution instead of water. To test for colorfastness to chlorinated seawater/swimming baths water, ISO 10S-E03, the specimen is immersed in sodium hypochlorite solution containing either 100, 50, or 20 mg of active chlorine per Hter at pH 7.5 for 1 h at 27°C, rinsed, dried, and assessed. [Pg.376]

An additional complication is that most dynamic data are stated for configurations involving reference materials such as water, air, and so on. The nature of the process material will affect the dynamic characteristics. For example, a thermowell will exhibit different characteristics when immersed in a viscous organic emulsion than when immersed in water. It is often difficult to extrapolate the available data to process conditions of interest. [Pg.758]

Ingress of water in the machine immersed in water under staled conditions of pressure and time will not be possible in a harmful quantity. [Pg.24]

The corrosion voltages of Fig. 23.3 also tell you what will happen when two dissimilar metals are joined together and immersed in water. If copper is joined to zinc, for instance, the zinc has a larger corrosion voltage than the copper. The zinc therefore becomes the anode, and is attacked the copper becomes the cathode, where the oxygen reaction takes place, and it is unattacked. Such couples of dissimilar metals can be dangerous the attack at the anode is sometimes very rapid, as we shall see in the next chapter. [Pg.229]

Such materials are soluble in the lower aliphatic alcohols, e.g.ethanol, and in phenols. They also absorb up to 21 % of moisture when immersed in water. If this material is heated with 2% citric acid at elevated temperatures, typically for 20 minutes at 120°C, cross-linking will take place Figure 18.20). [Pg.506]

Three months immersion in water leads to a 5% w/w absorption of water which at this level leads to a reduction in the heat distortion temperature (ISO) of 100 Celsius degrees. [Pg.524]

Metals immersed or partly immersed in water tend to corrode because of their thermodynamic instability. Natural waters contain dissolved solids and gases and sometimes colloidal or suspended matter all these may affect the corrosive projjerties of the water in relation to the metals with which it is in contact. The effect may be either one of stimulation or one of suppression, and it may affect either the cathodic or the anodic reaction more rarely there may be a general blanketing effect. Some metals form a natural protective film in water and the corrosiveness of the water to these metals depends on whether or not the dissolved materials it contains assist in the maintenance of a self-healing film. [Pg.347]

Technical Committee Reports of the National Association of Corrosion Engineers, USA, on pipeline corrosion control, including Statement on Minimum Requirements for Protection of Buried Pipelines , Some Observations on Cathodic Protection Criteria , Criteria for Adequate Cathodic Protection of Coated Buried Submerged Steel Pipelines and Similar Steel , Methods of Measuring Leakage Conductance of Coatings on Buried or Submerged Pipelines , Recommended Practice for Cathodic Protection of Aluminium Pipe Buried in Soil or Immersed in Water ... [Pg.226]

The cathodically protected primary structures may be the hulls of ships, jetties, pipes, etc. immersed in water, or pipes, cables, tanks, etc. buried in the soil. The nearby unprotected secondary structures subjected to interaction may be the hulls of adjacent ships, unbonded parts of a ship s hull such as the propeller blades, or pipes and cables laid close to the primary structure or to the cathodic-protection anode system or groundbed. [Pg.235]

Before considering the principles of this method, it is useful to distinguish between anodic protection and cathodic protection (when the latter is produced by an external e.m.f.). Both these techniques, which may be used to reduce the corrosion of metals in contact with electrolytes, depend upon the electrochemical mechanisms that result from changing the potential of a metal. The appropriate potential-pH diagram for the Fe-H20 system (Section 1.4) indicates the magnitude and direction of the changes in the potential of iron immersed in water (pH about 7) necessary to make it either passive or immune in the former case the stability of the metal depends on the formation of a protective film of metal oxide (passivation), whereas in the latter the metal itself is thermodynamically stable and egress of metal ions from the lattice into the solution is thus prevented. [Pg.261]

When a piece of iron is exposed to the air, it becomes covered with an oxide film. Upon immersion in water or solutions of certain electrolytes, the air-formed film breaks down and corrosion ensues. In order to prevent corrosion the air-formed film must be reinforced with similar material, or a ferric compound, and there are two ways in which this may be achieved ... [Pg.595]

When paint films are immersed in water or solutions of electrolytes they acquire a charge. The existence of this charge is based on the following evidence. In a junction between two solutions of potassium chloride, 0 -1 N and 0 01 N, there will be no diffusion potential, because the transport numbers of both the and the Cl" ions are almost 0-5. If the solutions are separated by a membrane equally permeable to both ions, there will still be no diffusion potential, but if the membrane is more permeable to one ion than to the other a diffusion potential will arise it can be calculated from the Nernst equation that when the membrane is permeable to only one ion, the potential will have the value of 56 mV. [Pg.598]


See other pages where Immersion in Water is mentioned: [Pg.142]    [Pg.142]    [Pg.478]    [Pg.64]    [Pg.224]    [Pg.230]    [Pg.438]    [Pg.458]    [Pg.10]    [Pg.351]    [Pg.213]    [Pg.109]    [Pg.353]    [Pg.311]    [Pg.158]    [Pg.43]    [Pg.557]    [Pg.989]    [Pg.1091]    [Pg.270]    [Pg.356]    [Pg.56]    [Pg.498]    [Pg.501]    [Pg.658]    [Pg.816]    [Pg.1264]    [Pg.717]   


SEARCH



Immersed

Immersion

Water immersion

© 2024 chempedia.info