Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Corrosion voltage

The corrosion voltages of Fig. 23.3 also tell you what will happen when two dissimilar metals are joined together and immersed in water. If copper is joined to zinc, for instance, the zinc has a larger corrosion voltage than the copper. The zinc therefore becomes the anode, and is attacked the copper becomes the cathode, where the oxygen reaction takes place, and it is unattacked. Such couples of dissimilar metals can be dangerous the attack at the anode is sometimes very rapid, as we shall see in the next chapter. [Pg.229]

If the pipe is connected to a slab of material which has a more negative corrosion voltage (Fig. 24.1), then the couple forms an electrolytic cell. As explained in Chapter 23, the more electronegative material becomes the anode (and dissolves), and the pipe becomes the cathode (and is protected). [Pg.232]

Button battery ingestion is rare, but the incidence is increasing (Yardeni et al. 2004). Most are less than 15 mm in diameter, and pass uneventfully. Button batteries contain alkali and cause injury by direct corrosion, voltage burns and pressure necro-... [Pg.98]

Fig.6 Godograf of voltage from corrosion imitators in nonmagnetic samples. Fig.6 Godograf of voltage from corrosion imitators in nonmagnetic samples.
Corrosion protection of metals can take many fonns, one of which is passivation. As mentioned above, passivation is the fonnation of a thin protective film (most commonly oxide or hydrated oxide) on a metallic surface. Certain metals that are prone to passivation will fonn a thin oxide film that displaces the electrode potential of the metal by +0.5-2.0 V. The film severely hinders the difflision rate of metal ions from the electrode to tire solid-gas or solid-liquid interface, thus providing corrosion resistance. This decreased corrosion rate is best illustrated by anodic polarization curves, which are constructed by measuring the net current from an electrode into solution (the corrosion current) under an applied voltage. For passivable metals, the current will increase steadily with increasing voltage in the so-called active region until the passivating film fonns, at which point the current will rapidly decrease. This behaviour is characteristic of metals that are susceptible to passivation. [Pg.923]

If the ECM of titanium is attempted in sodium chloride electrolyte, very low (10—20%) current efficiency is usually obtained. When this solution is replaced by some mixture of fluoride-based electrolytes, to achieve greater efficiencies (> 60%), a higher voltage (ca 60 V) is used. These conditions ate needed to break down the tenacious oxide film that forms on the surface of titanium. It is this film which accounts for the corrosion resistance of titanium, and together with its toughness and lightness, make this metal so useful in the aircraft engine industry. [Pg.308]

In other designs, a diffused siUcon sensor is mounted in a meter body that is designed to permit caUbration, convenient installation in pressure systems and electrical circuits, protection against overload, protection from weather, isolation from corrosive or conductive process fluids, and in some cases to meet standards requirements, eg, of Factory Mutual. A typical process pressure meter body is shown in Figure 10. Pressure measurement from 0—746 Pa (0—3 in. H2O) to 0—69 MPa (0—10,000 psi) is available for process temperatures in the range —40 to 125°C. Differential pressure- and absolute pressure-measuring meter bodies are also available. As transmitters, the output of these devices is typically 4—20 m A dc with 25-V-dc supply voltage. [Pg.25]

Acid Coolers. Cast Hon trombone coolers, once the industry standard (101), are considered obsolete. In 1970, anodically passivated stainless steel sheU and tube acid coolers became commercially available. Because these proved to have significant maintenance savings and other advantages, this type of cooler became widely used. Anodic passivation uses an impressed voltage from an external electrical power source to reduce metal corrosion. [Pg.187]

Electrical Properties. Electrical properties are important for the corrosion protection of chip-on-board (COB) encapsulated devices. Accelerated temperature, humidity, and bias (THB) are usually used to test the embedding materials. Conventional accelerating testing is done at 85°C, 85% relative humidity, and d-c bias voltage. Triple-track test devices with tantalum nitride (Ta2N), titanium—palladium—gold (Ti—Pd—Au) metallizations with 76... [Pg.191]

The apphcation of an impressed alternating current on a metal specimen can generate information on the state of the surface of the specimen. The corrosion behavior of the surface of an electrode is related to the way in which that surface responds to this electrochemical circmt. The AC impedance technique involves the application of a small sinusoidal voltage across this circuit. The frequency of that alternating signal is varied. The voltage and current response of the system are measured. [Pg.2437]

In maldug electrochemical impedance measurements, one vec tor is examined, using the others as the frame of reference. The voltage vector is divided by the current vec tor, as in Ohm s law. Electrochemical impedance measures the impedance of an electrochemical system and then mathematically models the response using simple circuit elements such as resistors, capacitors, and inductors. In some cases, the circuit elements are used to yield information about the kinetics of the corrosion process. [Pg.2439]

In humid and corrosive conditions, aluminium erodes faster than copper. These solid or hollow conductors connect the stipply side to the receiving end and are called bus ducts. They may be of the open type, stich as are used to feed a very high current tit very low voltage. A smelter unit is one such application. Btit nonnally they are housed in a sheet mettil enclostiie.. See Figtires 28.2(a) and 28.33(b). [Pg.859]

How does galvanising work As Fig. 24.4 shows, the galvanising process leaves a thin layer of zinc on the surface of the steel. This acts as a barrier between the steel and the atmosphere and although the driving voltage for the corrosion of zinc is greater than that for steel (see Fig. 23.3) in fact zinc corrodes quite slowly in a normal urban atmosphere because of the barrier effect of its oxide film. The loss in thickness is typically 0.1 mm in 20 years. [Pg.234]

This handbook deals only with systems involving metallic materials and electrolytes. Both partners to the reaction are conductors. In corrosion reactions a partial electrochemical step occurs that is influenced by electrical variables. These include the electric current I flowing through the metal/electrolyte phase boundary, and the potential difference A( = 0, - arising at the interface. and represent the electric potentials of the partners to the reaction immediately at the interface. The potential difference A0 is not directly measurable. Therefore, instead the voltage U of the cell Me /metal/electrolyte/reference electrode/Me is measured as the conventional electrode potential of the metal. The connection to the voltmeter is made of the same conductor metal Me. The potential difference - 0 is negligibly small then since A0g = 0b - 0ei ... [Pg.29]

Equation (2-38) is valid for every region of the surface. In this case only weight loss corrosion is possible and not localized corrosion. Figure 2-5 shows total and partial current densities of a mixed electrode. In free corrosion 7 = 0. The free corrosion potential lies between the equilibrium potentials of the partial reactions and U Q, and corresponds in this case to the rest potential. Deviations from the rest potential are called polarization voltage or polarization. At the rest potential = ly l, which is the corrosion rate in free corrosion. With anodic polarization resulting from positive total current densities, the potential becomes more positive and the corrosion rate greater. This effect is known as anodic enhancement of corrosion. For a quantitative view, it is unfortunately often overlooked that neither the corrosion rate nor its increase corresponds to anodic total current density unless the cathodic partial current is negligibly small. Quantitative forecasts are possible only if the Jq U) curve is known. [Pg.44]

Practical measurements providing data on corrosion risk or cathodic protection are predominantly electrical in nature. In principle they concern the determination of the three principal parameters of electrical technology voltage, current, and resistance. Also the measurement of the potential of metals in soil or in electrolytes is a high-resistance measurement of the voltage between the object and reference electrode and thus does not draw any current (see Table 3-1). [Pg.79]

This criterion is derived from the fact that the free corrosion potential in soil is generally I/cu Cuso4 -0-55 V. Ohmic voltage drop and protective surface films are not taken into consideration. According to the information in Chapter 4, a maximum corrosion rate for uniform corrosion in soil of 0.1 mm a can be assumed. This corresponds to a current density of 0.1 A m l In Fig. 2-9, the corrosion current density for steel without surface film changes by a factor of 10 with a reduction in potential of about 70 mV. To reduce it to 1 jum a (0.14 V would be necessary. The same level would be available for an ohmic voltage drop. With surfaces covered with films, corrosion at the rest potential and the potential dependence of corrosion in comparison with act contrary to each other so that qualitatively the situation remains the same. More relevant is... [Pg.104]


See other pages where Corrosion voltage is mentioned: [Pg.227]    [Pg.233]    [Pg.295]    [Pg.227]    [Pg.233]    [Pg.295]    [Pg.121]    [Pg.288]    [Pg.1942]    [Pg.2720]    [Pg.2730]    [Pg.1216]    [Pg.402]    [Pg.494]    [Pg.12]    [Pg.131]    [Pg.522]    [Pg.574]    [Pg.575]    [Pg.74]    [Pg.79]    [Pg.90]    [Pg.99]    [Pg.763]    [Pg.2428]    [Pg.78]    [Pg.531]    [Pg.228]    [Pg.229]    [Pg.46]    [Pg.90]    [Pg.107]    [Pg.108]    [Pg.143]   
See also in sourсe #XX -- [ Pg.227 , Pg.228 ]




SEARCH



© 2024 chempedia.info