Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis alkaline solutions

B). Many nitriles when treated with hydrogen peroxide in warm alkaline solution undergo hydrolysis to amides which can thus be readily obtained in high yield. Insoluble liquid nitriles can be treated directly in the aqueous suspension, but for insoluble solid nitriles the addition of a suitable organic solvent to give a complete solution may be desirable, although the completion of the hydrolysis may not then be so readily detected. [Pg.193]

Amides (except urea and thiourea), imides and nitriles, after the above alkaline hydrolysis, give derivatives similarly to those from the alkaline solution obtained from ammonium salts (p. 360). (A) If the original compound is aromatic, acidification of the cold solution deposits the crystalline acid. (B) The cold solution, when carefully neutralised (p. 332) and treated with benzylthiuronium chloride, deposits the thiuromum salt. [Pg.361]

Anthranilic acid. This substance, the ortho amino derivative of benzoic acid, may be conveniently prepared by the action of sodium hypobromite (or sodium hypochlorite) solution upon phthalimide in alkaline solution at 80°. The ring in phthalimide is opened by hydrolysis to phthalamidic acid and the latter undergoes the Hofmann reaction (compare Section 111,116) ... [Pg.754]

The experimental details already given for the detection and characterisation of aliphatic esters (determination of saponification equivalents h3 diolysis Section 111,106) apply equally to aromatic esters. A sfight modification in the procediu-e for isolating the products of hydrolysis is necessary for i)henolic (or phenyl) esters since the alkaline solution will contain hoth the alkali phenate and the alkali salt of the organic acid upon acidification, both the phenol and the acid will be hberated. Two methods may be used for separating the phenol and the acid ... [Pg.786]

When the compound for identification fails to respond to test 4 (aldehyde or ketone), the next class reactions to apply are the hydroxatnic acid teat and saponification, i.e., hydrolysis in alkaline solution. These are the class reactions for esters and anhydrides the rarely-encountered lactones react similarly. [Pg.1062]

Hydrolysis of simple (primary) amides in alkaline solution. [Pg.1076]

Hydrolysis of a sulphonamide. Mix 2 g. of the sulphonamide with 3-5 ml. of 80 per cent, sulphuric acid in a test-tube and place a thermometer in the mixture. Heat the test-tube, with frequent stirring by means of the thermometer, at 155-165° until the solid passes into solution (2-5 minutes). Allow the acid solution to cool and pour it into 25-30 ml. of water. Render the resulting solution alkaline with 20 per cent, sodium hydroxide solution in order to liberate the free amine. Two methods may be used for isolating the base. If the amine is volatile in steam, distil the alkaline solution and collect about 20 ml. of distillate extract the amine with ether, dry the ethereal solution with anhydrous potassium carbonate and distil off the solvent. If the amine is not appreciably steam-volatile, extract it from the alkaline solution with ether. The sulphonic acid (as sodium salt) in the residual solution may be identified as detailed under 13. [Pg.1077]

Noncatalytic Reactions Chemical kinetic methods are not as common for the quantitative analysis of analytes in noncatalytic reactions. Because they lack the enhancement of reaction rate obtained when using a catalyst, noncatalytic methods generally are not used for the determination of analytes at low concentrations. Noncatalytic methods for analyzing inorganic analytes are usually based on a com-plexation reaction. One example was outlined in Example 13.4, in which the concentration of aluminum in serum was determined by the initial rate of formation of its complex with 2-hydroxy-1-naphthaldehyde p-methoxybenzoyl-hydrazone. ° The greatest number of noncatalytic methods, however, are for the quantitative analysis of organic analytes. For example, the insecticide methyl parathion has been determined by measuring its rate of hydrolysis in alkaline solutions. [Pg.638]

This reaction, conducted in alkaline solution, also produces carboxyl groups by hydrolysis of the amide (54). Recent work on the reaction of polyacrylamide with hydroxylamine indicates that maximum conversion to the hydroxamate fiinctionahty (—CONHOH) takes place at a pH > 12 (57). Apparendy, this reaction of hydroxylamine at high pH, where it is a free base, is faster than the hydrolysis of the amide by hydroxide ion. Previous studies on the reaction of hydroxylamine with low molecular weight amides indicated that a pH about 6.5 was optimum (55). [Pg.141]

The AsF ion is very stable toward hydrolysis in aqueous solution. It is not hydroly2ed by boiling a strongly basic solution almost to dryness (26), although it is hydroly2ed in sulfuric acid (27) or in boiling perchloric acid (26). The hydrolysis of AsF in concentrated sulfuric acid (27) and in base (28) at 193—222°C is first order in AsF . The hydrolysis of AsF in alkaline solution is slower than either PF or SbF . ... [Pg.153]

Sodium borohydride and potassium borohydride [13762-51 -1] are unique among the complex hydrides because they are stable in alkaline solution. Decomposition by hydrolysis is slow in water, but is accelerated by increasing acidity or temperature. [Pg.302]

Alkali metal sulfamates are stable in neutral or alkaline solutions even at boiling temperatures. Rates of hydrolysis for sulfamic acid in aqueous solutions have been measured at different conditions (Table 4) (8,10)-... [Pg.61]

CycHc esters show accelerated hydrolysis rates. Ethylene sulfate compared to dimethyl sulfate is twice as fast ia weak acid (first order) and 20 times as fast ia weak alkaH (second order) (50). Catechol sulfate [4074-55-9] is 2 x 10 times faster than diphenyl sulfate ia alkaline solution (52). Alcoholysis rates of several dialkyl sulfates at 35—85°C are also known (53). [Pg.199]

The high temperature hydrolysis of sulfur in alkaline solutions also produces thiosulfates ... [Pg.28]

These can be prepared as for the benzoates using either acetic anhydride with 3N NaOH or acetyl chloride in pyridine. They are hydrolysed as described for the benzoates. This hydrolysis can also be carried out with aqueous 10% NaOH solution, completion of hydrolysis being indicated by the complete dissolution of the acetate in the aqueous alkaline solution. On steam distillation, acetic acid also distils off but in these cases the phenols (see above) are invariably solids which can be filtered off and recrystallised. [Pg.59]

Polytetrafluoroethylene decomposition products thermal decomposition of the fluorocarbon chain in air leads to the formation of oxidized products containing carbon, fluorine and oxygen. Because these products decompose in part by hydrolysis in alkaline solution, they can be quantitatively determined in air as fluoride to provide an index of exposure. No TLV is recommended pending determination of the toxicity of the products, but air concentration should be minimal. (Trade names Algoflon, Fluon, Teflon, Tetran.)... [Pg.176]

We illustrate with the example of ester hydrolysis in alkaline solution. The overall reaction is... [Pg.4]

The first of these can be made by careful hydrolysis of the A, A -disulfonate which is itself made by the reaction of SO2 and a nitrite in cold alkaline solution ... [Pg.744]

In contrast with cytosine, its aza analog readily undergoes hydrolysis both in acid and in alkaline solution. At 100°C hydrolysis is 50% complete within 10 min in a solution of hydrochloric acid or potassium hydroxide. The 5-methyl derivative is hydrolyzed even more readily. ... [Pg.233]

Poly(L-malate) decomposes spontaneously to L-ma-late by ester hydrolysis [2,4,5]. Hydrolytic degradation of the polymer sodium salt at pH 7.0 and 37°C results in a random cleavage of the polymer, the molecular mass decreasing by 50% after a period of 10 h [2]. The rate of hydrolysis is accelerated in acidic and alkaline solutions. This was first noted by changes in the activity of the polymer to inhibit DNA polymerase a of P. polycephalum [4]. The explanation of this phenomenon was that the degradation was slowest between pH 5-9 (Fig. 2) as would be expected if it were acid/base-catalyzed. In choosing a buffer, one should be aware of specific buffer catalysis. We found that the polymer was more stable in phosphate buffer than in Tris/HCl-buffer. [Pg.100]

The preparation of histidine by the hydrolysis of hemoglobin and precipitation with mercuric chloride in alkaline solution was... [Pg.45]

An interesting case arises when different products result from parallel pathways. The hydrolysis of isopropyl bromide in alkaline solutions is instructive. The two prod-... [Pg.60]

Parallel reactions. Show how the three rate constants that characterize the hydrolysis of isopropyl bromide in alkaline solution, Eqs. (3-68)—(3-70), can be obtained from studies of the kinetics and yields determined over a range of [OH" j. [Pg.66]

The mechanisms by which Pu(IV) is oxidized in aquatic environments is not entirely clear. At Oak Ridge, laboratory experiments have shown that oxidation occurs when small volumes of unhydrolyzed Pu(IV) species (i.e., Pu(IV) in strong acid solution as a citric acid complex or in 45 percent Na2Coj) are added to large volumes of neutral-to-alkaline solutions(23). In repeated experiments, the ratios of oxidized to reduced species were not reproducible after dilution/hydrolysis, nor did the ratios of the oxidation states come to any equilibrium concentrations after two months of observation. These results indicate that rapid oxidation probably occurs at some step in the hydrolysis of reduced plutonium, but that this oxidation was not experimentally controllable. The subsequent failure of the various experimental solutions to converge to similar high ratios of Pu(V+VI)/Pu(III+IV) demonstrated that the rate of oxidation is extremely slow after Pu(IV) hydrolysis reactions are complete. [Pg.303]

The complexation of Pu(IV) with carbonate ions is investigated by solubility measurements of 238Pu02 in neutral to alkaline solutions containing sodium carbonate and bicarbonate. The total concentration of carbonate ions and pH are varied at the constant ionic strength (I = 1.0), in which the initial pH values are adjusted by altering the ratio of carbonate to bicarbonate ions. The oxidation state of dissolved species in equilibrium solutions are determined by absorption spectrophotometry and differential pulse polarography. The most stable oxidation state of Pu in carbonate solutions is found to be Pu(IV), which is present as hydroxocarbonate or carbonate species. The formation constants of these complexes are calculated on the basis of solubility data which are determined to be a function of two variable parameters the carbonate concentration and pH. The hydrolysis reactions of Pu(IV) in the present experimental system assessed by using the literature data are taken into account for calculation of the carbonate complexation. [Pg.315]

Sucrose can, however, degrade to D-glucose and D-fructose in slightly alkaline solution at pH up to 8.3 (sucrose is most stable611 at pH 8.3-8.5, although the reason for this requires some elucidation), but this degradation proceeds by the normal acid-hydrolysis mechanism. In sucrose manufacture, therefore, the main reaction causing sucrose loss, between pH 7 and about 8.3, is the same acid hydrolysis that occurs at lower (acid) pH. [Pg.449]

Because alkali degradation of sucrose does not result in inversion products, in slightly alkaline solution (pH < 8.5), the loss of sucrose to invert sugar (glucose + fructose) is a consequence of the acid hydrolysis mechanism, which provides D-glucose and D-fructose for further alkaline degradation. [Pg.460]

Another approach for the synthesis of enantiopure amino acids or amino alcohols is the enantioselective enzyme-catalyzed hydrolysis of hydantoins. As discussed above, hydantoins are very easily racemized in weak alkaline solutions via keto enol tautomerism. Sugai et al. have reported the DKR of the hydantoin prepared from DL-phenylalanine. DKR took place smoothly by the use of D-hydantoinase at a pH of 9 employing a borate buffer (Figure 4.17) [42]. [Pg.101]


See other pages where Hydrolysis alkaline solutions is mentioned: [Pg.76]    [Pg.276]    [Pg.76]    [Pg.276]    [Pg.29]    [Pg.125]    [Pg.207]    [Pg.296]    [Pg.28]    [Pg.522]    [Pg.240]    [Pg.295]    [Pg.419]    [Pg.57]    [Pg.14]    [Pg.563]    [Pg.461]    [Pg.544]    [Pg.420]    [Pg.994]    [Pg.42]    [Pg.267]    [Pg.480]    [Pg.92]    [Pg.384]   
See also in sourсe #XX -- [ Pg.125 ]

See also in sourсe #XX -- [ Pg.125 ]




SEARCH



Alkaline solution

Alkalinity, hydrolysis

Solution alkalinity

Solutions alkaline solution

© 2024 chempedia.info