Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbons polystyrene

These equations imply that A132 will exceed A12 if A33 is larger than A13 + A23. This effect, termed lyophobic bonding, occurs if the solvent-surface interaction is weaker than that between the solvent molecules. More interestingly, the dispersion interaction will be repulsive (A 132 < 0) when An and/or A23 are sufficiently large. Israelachvili [1] tabulates a number of Am values Awhw Ahwh 0-4X 10 erg, Apwp 1 x 10" erg, and Aqwq = O.SX -IO erg, where W, H, P, and Q denote water, hydrocarbon, polystyrene and quartz respectively. [Pg.240]

Polystyrene-block-poly(t-butylstyrene) Aliphatic hydrocarbon Polystyrene... [Pg.361]

Plastics. Vehicles in offset inks for plastics (polyethylene, polystyrene, vinyl) are based on hard drying oleoresinous varnishes which sometimes are diluted with hydrocarbon solvents. Letterset inks for polystyrene employ vehicles of somewhat more polar nature. Polyester or other synthetic resins (acryhc) dissolved in glycol ethers and/or esters are used in some of the older inks. Uv inks are widely used for decoration of these preformed plastic containers. [Pg.250]

Ink Types. There are 10 gravure ink types categorized by the binders or solvents used A, aUphatic hydrocarbon B, aromatic hydrocarbon C, nitrocellulose D, polyamide resins E, SS nitrocellulose M, polystyrene T, chlorinated mbber V, vinyls W, water-based and X, miscellaneous. [Pg.251]

The alcohols, proprietary denatured ethyl alcohol and isopropyl alcohol, are commonly used for E-type inks. Many E-type inks benefit from the addition of small amounts of ethyl acetate, MEK, or normal propyl acetate to the solvent blends. Aromatic hydrocarbon solvents are used for M-type inks. Polystyrene resins are used to reduce the cost of top lacquers. T-type inks are also reduced with aromatic hydrocarbons. Acryflc resins are used to achieve specific properties for V-type inks. Vehicles containing vinyl chloride and vinyl acetate copolymer resins make up the vinyl ink category. Ketones are commonly used solvents for these inks. [Pg.252]

Commercial polystyrenes are normally rather pure polymers. The amount of styrene, ethylbenzene, styrene dimers and trimers, and other hydrocarbons is minimized by effective devolatilization or by the use of chemical initiators (33). Polystyrenes with low overall volatiles content have relatively high heat-deformation temperatures. The very low content of monomer and other solvents, eg, ethylbenzene, in PS is desirable in the packaging of food. The negligible level of extraction of organic materials from PS is of cmcial importance in this appHcation. [Pg.505]

Polystyrene. Polystyrene [9003-53-6] is a thermoplastic prepared by the polymerization of styrene, primarily the suspension or bulk processes. Polystyrene is a linear polymer that is atactic, amorphous, inert to acids and alkahes, but attacked by aromatic solvents and chlorinated hydrocarbons such as dry cleaning fluids. It is clear but yellows and crazes on outdoor exposure when attacked by uv light. It is britde and does not accept plasticizers, though mbber can be compounded with it to raise the impact strength, ie, high impact polystyrene (HIPS). Its principal use in building products is as a foamed plastic (see Eoamed plastics). The foams are used for interior trim, door and window frames, cabinetry, and, in the low density expanded form, for insulation (see Styrene plastics). [Pg.327]

Principal component analysis has been used in combination with spectroscopy in other types of multicomponent analyses. For example, compatible and incompatible blends of polyphenzlene oxides and polystyrene were distinguished using Fourier-transform-infrared spectra (59). Raman spectra of sulfuric acid/water mixtures were used in conjunction with principal component analysis to identify different ions, compositions, and hydrates (60). The identity and number of species present in binary and tertiary mixtures of polycycHc aromatic hydrocarbons were deterrnined using fluorescence spectra (61). [Pg.429]

Ion-exchange Resins. An ion-exchange resin is made up of particles of an insoluble elastic hydrocarbon network to which is attached a large number of ionisable groups. Materials commonly used comprise synthetic ion-exchange resins made, for example, by crosslinking polystyrene to which has been attached non-... [Pg.21]

The foams, marketed by Rohm as Rohacell, are stable at room temperature to hydrocarbons, ketones, chlorinated solvents and 10% sulphuric acid. They may be used under load at temperature up to 160°C. Uses quoted for these materials include bus engine covers, aircraft landing gear doors, radar domes, domes, ski cores and tennis racket cores. Their potential is in applications demanding a level of heat deformation resistance, solvent resistance and stiffness not exhibited by more well-known cellular polymers such as expanded polystyrene and the polyurethane foams. [Pg.421]

Being a hydrocarbon with a solubility parameter of 18.6MPa - it is dissolved by a number of hydrocarbons with similar solubility parameters, such as benzene and toluene. The presence of a benzene ring results in polystyrene having greater reactivity than polyethylene. Characteristic reactions of a phenyl group such as chlorination, hydrogenation, nitration and sulphonation can all be performed with... [Pg.433]

The pure hydrocarbon nature of polystyrene gives it excellent electrical insulation characteristics, as a result of both the fundamentally good characteristics of the material and to the low water absorption of such a hydrocarbon polymer. The insulation characteristics are therefore well maintained in humid conditions. [Pg.434]

The Dow Log Process. Polystyrene is blended with a low boiling chlorinated hydrocarbon and extruded. The solvent volatilises as the blend emerges from the die and the mass expands. This process is still used to some extent. [Pg.457]

The nylons have found steadily increasing application as plastics materials for speciality purposes where their toughness, rigidity, abrasion resistance, good hydrocarbon resistance and reasonable heat resistance are important. Because of their high cost they have not become general purpose materials such as polyethylene and polystyrene, which are about a third of the price of the nylons. [Pg.503]

For materials of equivalent density water-blown polyurethanes and the hydrocarbon-blown polystyrene foams have similar thermal conductivities. This is because the controlling factor determining the conductivity is the nature of the gas present in the cavities. In both of the above cases air, to all intents and purposes, normally replaces any residual blowing gas either during manufacture or soon after. Polyurethane foams produced using fluorocarbons have a lower thermal conductivity (0.12-0.15 Btu in fr h °F ) (0.017-0.022 W/mK) because of the lower conductivity of the gas. The comparative thermal conductivities for air, carbon dioxide and monofluorotrichloromethane are given in Table 27.3. [Pg.802]

Carbon, hydrogen and possibly oxygen Resin and derivatives Natural drying oils Cellulose derivatives Alkyd resins Epoxy resins (uncured) Phenol-formaldehyde resins Polystyrene Acrylic resins Natural and synthetic rubbers Carbon monoxide Aldehydes (particularly formaldehyde, acrolein and unsaturated aldehydes) Carboxylic acids Phenols Unsaturated hydrocarbons Monomers, e.g. from polystyrene and acrylic resins... [Pg.138]

Extruded polystyrene sheet - Alternatives currently include HCFC-22, hydrocarbons, injected carbon dioxide, and HFC-152a. In the long term, these same alternatives (except for HCFC-22) will be used, along with possible use of atmospheric gases. [Pg.35]

S-B-S Triblocks are block copolymers consisting of a block of butadiene units flanked by blocks of styrene. Below the T, of polystyrene blocks from different chains congregate into domains which act both as cross-links and reinforcing fillers. The jDolymers will dissolve in hydrocarbon solvents. Hydrogenated S-B-S materials have better resistance to ageing. [Pg.937]

Formation of block polymers is not limited to hydrocarbon monomers only. For example, living polystyrene initiates polymerization of methyl methacrylate and a block polymer of polystyrene and of polymethyl methacrylate results.34 However, methyl methacrylate represents a class of monomers which may be named a suicide monomer. Its polymerization can be initiated by carbanions or by an electron transfer process, the propagation reaction is rapid but eventually termination takes place. Presumably, the reactive carbanion interacts with the methyl group of the ester according to the following reaction... [Pg.180]

The order of reactivities could be also reversed by a change of solvent. For example, in THF styrene is more reactive than butadiene towards salts of polystyryl anions, whereas in hydrocarbon solvents butadiene is more reactive than styrene towards lithium polystyrene. This reversal of reactivities presumably is caused by a change in the mechanism of propagation. The monomers react directly with carbanions in THF, but become coordinated to Li+ in hydrocarbon solvents. [Pg.131]

Deposition Precursors. Diamond has been deposited from a large variety of precursors which include, besides methane, aliphatic and aromatic hydrocarbons, alcohols, ketones, and solid polymers such as polyethylene, polypropylene, and polystyrene, and halogens. [Pg.197]

About half of the styrene produced is polymerized to polystyrene, an easily molded, low-cost thermoplastic that is somewhat brittle. Foamed polystyrene can be made by polymerizing it in the presence of low-boiling hydrocarbons, which cause bubbles of gas in the solid polymer after which it migrates out and evaporates. Modification and property enhancement of polystyrene-based plastics can be readily accomplished by copolymerization with other substituted ethylenes (vinyl monomers) for example, copolymerization with butadiene produces a widely used synthetic rubber. [Pg.125]


See other pages where Hydrocarbons polystyrene is mentioned: [Pg.75]    [Pg.80]    [Pg.784]    [Pg.75]    [Pg.80]    [Pg.784]    [Pg.1109]    [Pg.254]    [Pg.279]    [Pg.578]    [Pg.239]    [Pg.240]    [Pg.68]    [Pg.364]    [Pg.233]    [Pg.37]    [Pg.498]    [Pg.553]    [Pg.435]    [Pg.441]    [Pg.309]    [Pg.479]    [Pg.54]    [Pg.675]    [Pg.40]    [Pg.36]    [Pg.68]    [Pg.119]    [Pg.120]    [Pg.124]    [Pg.218]   
See also in sourсe #XX -- [ Pg.8 , Pg.70 ]




SEARCH



Hydrocarbon backbone, polystyrene

Hydrocarbon polymers polystyrene

© 2024 chempedia.info