Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Highly support materials

Increasing the surface-to-bulk ratio of the sample to be studied. This is easily done in the case of highly porous materials, and has been exploited for the characterization of supported catalysts, zeolites, sol-gels and porous silicon, to mention a few. [Pg.1779]

In practice, direct insertion of samples requires a somewhat more elaborate arrangement than might be supposed. The sample must be placed on an electrode before insertion into the plasma flame. However, this sample support material is not an electrode in the usual meaning of the term since no electrical current flows through it. Heating of the electrode is done by the plasma flame. The electrode or probe should have small thermal mass so it heats rapidly, and it must be stable at the high temperatures reached in the plasma flame. For these reasons, the sort of materials used... [Pg.114]

Addition of Inert Filter Aids. FUtet aids ate rigid, porous, and highly permeable powders added to feed suspensions to extend the appheabUity of surface filtration. Very dilute or very fine and slimy suspensions ate too difficult to filter by cake filtration due to fast pressure build-up and medium blinding addition of filter aids can alleviate such problems. Filter aids can be used in either or both of two modes of operation, ie, to form a precoat which then acts as a filter medium on a coarse support material called a septum, or to be mixed with the feed suspension as body feed to increase the permeabihty of the resulting cake. [Pg.389]

BeryUium is important as a sensor support material in advanced fire-control and navigation systems for military heflcopters and fighter aircraft utilizing the low weight and high stiffness of the material to isolate instmmentation from vibration. It is also used for scanning mirrors in tank fire-control systems. [Pg.69]

M0S2 is one of the most active hydroprocessing catalysts, but it is expensive, and the economical way to apply it is as highly dispersed material on a support, y-Al202. The activity of the supported catalyst is increased by the presence of promoter ions, Co " or Ni ". The stmctures of the catalysts are fairly well understood the M0S2 is present in layers only a few atoms thick on the support surface, and the promoter ions are present at the edges of the M0S2 layers, where the catalytic sites are located (100,101). [Pg.182]

The method of preparation of a support material has a tremendous effect on its properties (11). For example, zeoHtes, which are highly stmctured aluminosihcates, are known to be extremely sensitive to the conditions employed both during and after crystallization (12). Also, when siUca—titania is precipitated by a coprecipitation method using ammonia, in which localized hydroxide ion gradients are estabUshed by the precipitation process itself, the product is much more acidic than when it is precipitated using urea, which suppHes hydroxide ion slowly and uniformly during precipitation (13). [Pg.194]

Some catalyst supports rely on a relatively low surface area stmctural member coated with a layer of a higher surface area support material. The automotive catalytic converter monolith support is an example of this technology. In this appHcation, a central core of multichanneled, low surface area, extmded ceramic about 10 cm in diameter is coated with high surface area partially hydrated alumina onto which are deposited small amounts of precious metals as the active catalytic species. [Pg.194]

Porosity and Pore Size. The support porosity is the volume of the support occupied by void space and usually is described in units of cm /g. This value represents the maximum amount of Hquid that may be absorbed into the pore stmcture, which is an especially important consideration for deposition of metal salts or other active materials on the support surface by Hquid impregnation techniques. The concentration of active material to be used in the impregnating solution is deterrnined by the support porosity and the desired level of active material loading on the catalyst. If the porosity is too low, inefficient use of the support material and reactor volume may result. If the porosity is too high, the support body may not contain sufficient soHd material to provide the strength necessary to survive catalyst manufacture and handling. [Pg.194]

Catalytic Support Body Monolithic Honeycomb Unit. The terms substrate and brick are also used to describe the high geometric surface area material upon which the active coating material is placed. Monolithic honeycomb catalytic support material comes in both ceramic and metallic form. Both are used in automobile catalysts and each possesses unique properties. A common property is a high geometric surface area which is inert and does not react with the catalytic layer. [Pg.486]

Above temperatures of 900°F, the austenitic stainless steel and other high alloy materials demonstrate inereas-ingly superior creep and stress-rupture properties over the chromium-molybdenum steels. For furnace hangers, tube supports, and other hardware exposed to firebox temperatures, cast alloys of 25 Cr-20 Ni and 25 Cr-12 Ni are frequently used. These materials are also generally needed because of their resistanee to oxidation and other high temperature corrodents. [Pg.261]

This work was supported by JSPS Grant for "Advanced High Temperature Materials - Development of Practicable High Temperature Intermetallics" and Grant-in-Aid for Scientific Research (No.07650818, No.08242216 and No.07405031) from the Ministry of Education, Science, Sports and Culture, Japan, and in part by the NEDO International Research Grant for the Intermetallics Team and the research grant from R D Institute of Metals and Composites for Future Industries. [Pg.319]

The support materials for the stationary phase can be relatively inactive supports, e.g. glass beads, or adsorbents similar to those used in LSC. It is important, however, that the support surface should not interact with the solute, as this can result in a mixed mechanism (partition and adsorption) rather than true partition. This complicates the chromatographic process and may give non-reproducible separations. For this reason, high loadings of liquid phase are required to cover the active sites when using high surface area porous adsorbents. [Pg.218]

Support materials were prepared by blending the fine power as stated in the later part of this case study. PVA was used as the binder. The organic macromolecule was used to create sufficient pores in the material when bumed out after a solid strong support was formed. Drying was performed in a high-temperature furnace. The shape and thickness of the support were based on the mass of the material and the way it was moulded. [Pg.384]

Polymers or other supporting materials may not be able to tolerate the high current densities desired for preparative electrolyses. [Pg.62]

Highly active gold catalysts can be prepared by an appropriate selection of preparation methods such as CP, DP, DR, and SG with dimethyl Au(III) acetylacetonate, depending on the kind of support materials and reactions... [Pg.69]

For the support material of electro-catalysts in PEMFC, Vulcan XC72(Cabot) has been widely used. This carbon black has been successfully employed for the fuel cell applications for its good electric conductivity and high chemical/physical stability. But higher amount of active metals in the electro-catalysts, compared to the general purpose catalysts, make it difficult to control the metal size and the degree of distribution. This is mainly because of the restricted surface area of Vulcan XC72 carbon black. Thus complex and careM processes are necessary to get well dispersed fine active metal particles[4,5]. [Pg.637]

As described above, the activity of a catalyst can be measured by mounting it in a plug flow reactor and measuring its intrinsic reactivity outside equilibrium, with well-defined gas mixtures and temperatures. This makes it possible to obtain data that can be compared with micro-kinetic modeling. A common problem with such experiments materializes when the rate becomes high. Operating dose to the limit of zero conversion can be achieved by diluting the catalyst with support material. [Pg.206]

However, these techniques may not detect important phenomena taking place on the surface of or within the interior of individual Inm-to Ipm-diameter inorganic particles that are s3rnthesized specifically for their catalytic activity. AEM is an extremely useful technique for analysis of the individual heterogeneous catalyst particle and its relationship to various supporting materials. Structural and chemical analyses can be obtained from specimen regions nearly 1000 times smaller than those studied by conventional bulk analysis techniques. This high lateral spatial... [Pg.361]

Molecular-dynamics simulations also showed that spherical gold clusters is stable in the form of FCC crystal structure in a size range of = 13-555 [191]. This is more likely a key factor in developing extremely high catalytic activity on reducible Ti02 as a support material. Thus, it controls the electronic structure of Au nanoparticles (e.g. band gap and BE shift of Au 4f7/2 band) and thereby the catalytic activity. [Pg.99]

Concerning the mechanisms how gold, inert as a metal, can exhibit surprisingly high catalytic activities and se-lectivities, several hypotheses have been proposed. They can be classified in terms of active sites or reaction sites [38], which may change in some cases depending on support materials even for the same reactions. [Pg.186]

One solution-based approach that works for gold catalysts, in that it produces highly active catalysts, is the deposition-precipitation (DP) method [8]. The DP method entails adjusting the pH, temperature, and gold concentration of an HAUCI4 solution to form a gold hydroxide species which is then deposited onto the support material [8]. This catalyst precursor is washed, dried, and annealed to form small (<5nm) catalyst particles [9]. The DP method has a number of limitations for example, DP cannot produce Au particles with diameters less than 5 nm on support materials with low-isoelectric points (lEPs) like SiOz and WO3 [5,10,11]. [Pg.347]


See other pages where Highly support materials is mentioned: [Pg.87]    [Pg.139]    [Pg.13]    [Pg.451]    [Pg.44]    [Pg.2137]    [Pg.216]    [Pg.4]    [Pg.225]    [Pg.218]    [Pg.625]    [Pg.140]    [Pg.385]    [Pg.80]    [Pg.111]    [Pg.111]    [Pg.180]    [Pg.52]    [Pg.58]    [Pg.121]    [Pg.191]    [Pg.212]    [Pg.216]    [Pg.544]    [Pg.36]    [Pg.80]    [Pg.183]    [Pg.254]    [Pg.348]   


SEARCH



Support material

Supporting material

© 2024 chempedia.info