Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Void space

In applying Eq. XVI-13 to an actual porous bed, r is taken to be proportional to the volume of void space Ale, where e is die porosity, divided by the amount of surface alternatively, then,... [Pg.580]

At the completion of adsorption, the less selectively adsorbed components have been recovered as product. However, a significant quantity of the weaMy adsorbed species are held up in the bed, especially in the void spaces. A cocurrent depressurization step reduces the bed pressure by allowing dow out of the bed cocurrendy to feed dow and thus reduces the amount of product retained in the voids (holdup), improving product recovery, and increases the concentration of the more strongly adsorbed components in the bed. The purity of the more selectively adsorbed species has been shown to depend strongly on the cocurrent depressurization step for some appHcations (66). A cocurrent depressurization step is optional because a countercurrent one always exists. Criteria have been developed to indicate when the use of both is justified (67). [Pg.282]

Chaiacteiistics of tfie pads vaiy slighdy witfi mesh density, but void space is typically 97—99% of total volume. Collection is by inertial impaction and direct impingement thus efficiency will be low at low superficial velocities (usually below 2.3 m/s) and for fine particles. The desireable operating velocity is given... [Pg.407]

Examples of the hydroquinone inclusion compounds (91,93) are those formed with HCl, H2S, SO2, CH OH, HCOOH, CH CN (but not with C2H 0H, CH COOH or any other nitrile), benzene, thiophene, CH, noble gases, and other substances that can fit and remain inside the 0.4 nm cavities of the host crystals. That is, clathration of hydroquinone is essentially physical in nature, not chemical. A less than stoichiometric ratio of the guest may result, indicating that not all void spaces are occupied during formation of the framework. Hydroquinone clathrates are very stable at atmospheric pressure and room temperature. Thermodynamic studies suggest them to be entropic in nature (88). [Pg.70]

Wetting Clumps. The density of a clump, Pi lump to the fraction of void space within the perimeter of the clump (porosity), SpQj, ... [Pg.542]

Because mass flow bins have stable flow patterns that mimic the shape of the bin, permeabihty values can be used to calculate critical, steady-state discharge rates from mass flow hoppers. Permeabihty values can also be used to calculate the time required for fine powders to settle in bins and silos. In general, permeabihty is affected by particle size and shape, ie, permeabihty decreases as particle size decreases and the better the fit between individual particles, the lower the permeabihty moisture content, ie, as moisture content increases, many materials tend to agglomerate which increases permeabihty and temperature, ie, because the permeabihty factor, K, is inversely proportional to the viscosity of the air or gas in the void spaces, heating causes the gas to become more viscous, making the sohd less permeable. [Pg.555]

Air Entrainment. Fine particles generally have a lower permeabiUty than coarse particles, and therefore tend to retain air longer in void spaces. Heavier particles settie more quickly in a duidized mixture than lighter particles. Thus, when a mixture of particles is charged into a bin, it is not uncommon to find a vertical segregation pattern, where the coarser, heavier particles concentrate at the bottom of the bed and the finer, lighter particles concentrate near the top. [Pg.560]

Most commercially available RO membranes fall into one of two categories asymmetric membranes containing one polymer, or thin-fHm composite membranes consisting of two or more polymer layers. Asymmetric RO membranes have a thin ( 100 nm) permselective skin layer supported on a more porous sublayer of the same polymer. The dense skin layer determines the fluxes and selectivities of these membranes whereas the porous sublayer serves only as a mechanical support for the skin layer and has Httle effect on the membrane separation properties. Asymmetric membranes are most commonly formed by a phase inversion (polymer precipitation) process (16). In this process, a polymer solution is precipitated into a polymer-rich soHd phase that forms the membrane and a polymer-poor Hquid phase that forms the membrane pores or void spaces. [Pg.144]

When the void space in an agglomerate is completely filled with a Hquid (Fig. Ic), the capillary state of wetting is reached, and the tensile strength of the wet particle matrix arises from the pressure deficiency in the Hquid network owing to the concave Hquid interfaces at the agglomerate surface. This pressure deficiency can be calculated from the Laplace equation for chcular capillaries to yield, for Hquids which completely wet the particles ... [Pg.110]

Porosity and Pore Size. The support porosity is the volume of the support occupied by void space and usually is described in units of cm /g. This value represents the maximum amount of Hquid that may be absorbed into the pore stmcture, which is an especially important consideration for deposition of metal salts or other active materials on the support surface by Hquid impregnation techniques. The concentration of active material to be used in the impregnating solution is deterrnined by the support porosity and the desired level of active material loading on the catalyst. If the porosity is too low, inefficient use of the support material and reactor volume may result. If the porosity is too high, the support body may not contain sufficient soHd material to provide the strength necessary to survive catalyst manufacture and handling. [Pg.194]

Sintering. A ceramic densiftes duriag sintering as the porosity or void space between particles is reduced. Additionally, the cohesiveness of the body iacreases as iaterparticle contact or grain boundary area iacreases. Both processes depend on and are controlled by material transport. [Pg.311]

Palygorskite and sepioHte minerals are 2 1 layered phyUosiHcates that differ from the above mentioned clays because the octahedral sheets have significant intracrystalline void space caused by discontinuous octahedral layers. The basal tetrahedral unit is connected to an adjacent inverted basal tetrahedral creating a void space or channel. Charge deficits are balanced by hydrated cations in the intracrystalline space. [Pg.195]

As a result of the linear expansion, the reduced volume of the dihydrate, and the evaporation of excess water, the percentage of void spaces in plaster is ca 45%, in stone 15%, and in improved stone 10%. Thus, the additional amount of water required for plaster contributes to the volume but not to the strength of the hardened material (105). [Pg.476]

E] Compared napthalene sublimination to aqueous absorption to obtain fBerl saddles, = diameter of sphere with same surface area as pacldug piece. Lc — operating void space = e —, where e =... [Pg.621]

Materials or combinations of materials which have air- or gas-fiUed pockets or void spaces that retard the transfer of heat with reasonable effectiveness are thermal insulators. Such materials may be particulate and/or fibrous, with or without binders, or may be assembled, such as multiple heat-reflecting surfaces that incorporate air- or gas-filled void spaces. [Pg.1098]

Material and Ball Charges The load of a grinding medium can be expressed in terms of the percentage of the volume of the mill that it occupies i.e., a bulk volume of balls half filhng a mill is a 50 percent ball charge. The void space in a static bulk volume of balls is approximately 41 percent. Since the medium expands as the mill is rotated, the ac tual running volume is unknown. [Pg.1851]

Often, the size of items packaged in corrugated cartons either does not permit interiockiug of layers of carious, or leaves considerable void space between them. Since calcrrlatiug by hand the best size of... [Pg.1959]

Kinetics The capacity and efficiency of biofilter operation is a function of active surface area, filter void space, target removal efficiency, gas species, gas concentration, and gas flow rate. A simphfied theoretical model described by S.P.P. Ottengraf et al. is schematically represented by in Fig. 25-18. The mass balance made around the hq-uid-phase biolayer can be described as follows ... [Pg.2193]

Isotherm measurements of methane at 298 K can be made either by a gravimetric method using a high pressure microbalance [31], or by using a volumetric method [32]. Both of these methods require correction for the nonideality of methane, but both methods result in the same isotherm for any specific adsorbent [20]. The volumetric method can also be used for measurement of total storage. Here it is not necessary to differentiate between the adsorbed phase and that remaining in the gas phase in void space and macropore volume, but simply to evaluate the total amount of methane in the adsorbent filled vessel. To obtain the maximum storage capacity for the adsorbent, it would be necessary to optimally pack the vessel. [Pg.285]


See other pages where Void space is mentioned: [Pg.2701]    [Pg.2768]    [Pg.2771]    [Pg.2779]    [Pg.71]    [Pg.142]    [Pg.38]    [Pg.1]    [Pg.386]    [Pg.188]    [Pg.444]    [Pg.8]    [Pg.561]    [Pg.561]    [Pg.561]    [Pg.151]    [Pg.50]    [Pg.109]    [Pg.429]    [Pg.502]    [Pg.225]    [Pg.496]    [Pg.19]    [Pg.172]    [Pg.682]    [Pg.1476]    [Pg.1509]    [Pg.1542]    [Pg.1822]    [Pg.2069]    [Pg.2224]    [Pg.14]   
See also in sourсe #XX -- [ Pg.170 ]




SEARCH



Free void space

Interstitial void space

Precipitate void space

Void fraction space average

Void spacing factor

Void, voids

Voiding

Voids

Water void spaces

© 2024 chempedia.info