Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heterogeneous catalytic reactions testing

In a recent survey [19] it was noted that a realistic model for catalytic oxidation reactions must include equations describing the evolution of at least two concentrations of surface substances and account for the slow variation in the properties of the catalyst surface (e.g. oxidation-reduction). For the synchronization of the dynamic behaviour for various surface domains, it is necessary to take into consideration changes in the concentrations of gas-phase substances and the temperature of the catalyst surface. It is evident that, in the hierarchy of modelling levels, such models must be constructed and tested immediately after kinetic models. On the one hand, the appearance of such models is associated with the experimental data on self-oscillations in reactors with noticeable concentration variations of the initial substances and products (e.g. ref. 74) on the other hand, there was a gap between the comprehensively examined non-isothermal models with simple kinetics and those for the complex heterogeneous catalytic reactions... [Pg.269]

Among the many mathematical models of fluidized bed reactors found in the literature the model of Werther (J ) has the advantage that the scale-dependent influence of the bed hydrodynamics on the reaction behaviour is taken into account. This model has been tested with industrial type gas distributors by means of RTD-measurements (3)and conversion measurements (4), respectively. In the latter investigation (4) a simple heterogeneous catalytic reaction i.e. the catalytic decomposition of ozone has been used. In the present paper the same modelling approach is applied to complex reaction systems. The reaction system chosen as an example of a complex fluid bed reaction is the synthesis of maleic anhydride (Figure 1). [Pg.121]

Meunier FC. The design and testing of kinetically-appropriate operando spectroscopic cells for investigating heterogeneous catalytic reactions. Chem Soc Rev. 2010 39 4602. [Pg.326]

Madon and Boudart propose a simple experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions [R. J. Madon and M. Boudart, Ind. Eng. Chem. Fundam., 21 (1982) 438]. The experiment involves making rate measurements on catalysts in which the concentration of active material has been purposely changed. In the absence of artifacts from transport limitations, the reaction rate is directly proportional to the concentration of active material. In other words, the intrinsic turnover frequency should be independent of the concentration of active material in a catalyst. One way of varying the concentration of active material in a catalyst pellet is to mix inert particles together with active catalyst particles and then pelletize the mixture. Of course, the diffusional characteristics of the inert particles must be the same as the catalyst particles, and the initial particles in the mixture must be much smaller than the final pellet size. If the diluted catalyst pellets contain 50 percent inert powder, then the observed reaction rate should be 50 percent of the rate observed over the undiluted pellets. An intriguing aspect of this experiment is that measurement of the number of active catalytic sites is not involved with this test. However, care should be exercised when the dilution method is used with catalysts having a bimodal pore size distribution. Internal diffusion in the micropores may be important for both the diluted and undiluted catalysts. [Pg.229]

The simplicity and general utility of the Madon-Boudart criterion make it one of the most important experimental tests to confirm that kinetic data are free from artifacts. It can be used for heterogeneous catalytic reactions carried out in batch, continuous stirred tank, and tubular plug flow reactors. [Pg.230]

This catalytic system was very flexible because by simple modification of the reaction conditions it was possible to prepare oxidized polymers with the desired level of carboxyl and carbonyl functions. No waste was formed because the process did not involve any acids, bases or buffer solutions. The incipient wetness process is very easy to scale up. Hydrophilic starch was prepared in batches of 150 L and incorporated successfully in paint formulations. Good results were also obtained with in vitro and in vivo tests for cosmetic formulation. Interestingly, this is a rather unique example of a heterogeneous catalytic process involving a soluble catalyst and a solid substrate. [Pg.69]

Keeping in mind the industrial usage of the heterogeneous catalysts, the leaching and recycle ability of all polymer-supported catalysts has also been tested. All these catalysts are stable and do not leach during the catalytic reactions. [Pg.36]

WUes and Watts [48,53] have reported the use of a rather successful heterogenic catalytic system to carry out these reactions. They have tested a borosilicate glass microreactor (dimensions 3.0 x 3.0 x 0.6 cm) consisting of two etched layers with two inlets, mixing channels, a larger etched region and the outlet. A solid-supported catalyst was dry-packed in this structure (Fig. 4). [Pg.178]

In the last decade methods of combinatorial catalysis and high throughput experimentation has obtained great interest [1-4]. In the field of heterogeneous catalysis most of the efforts are devoted to the investigation of gas phase reactions, where several hundreds catalysts can simultaneously be tested [5,6]. Contrary to that, in high-pressure liquid phase catalytic reactions in a single reactor module only 8-16 parallel experiments can be performed. There are reports to use up to six modules as a parallel setup [7]. [Pg.303]

Most recently, the test has been applied to examination of the mechanism of a heterogeneous Heck reaction, promoted by Pd on alumina [25]. In the presence of the solid catalyst, 4-iodobenzamide coupled efficiently with butyl acrylate yielding the cinnamate, and it was suspected that the catalytic agent was a soluble form of palladium released from and then recaptured by the alumina support. To test this, the amide was attached to a commercially available resin with suitable functionality, and the supported amide (15 in Scheme 9.10) was allowed to react with the acrylate and Pd on alumina. The same product, identified after release from the polymer by TFA treatment, was formed, and further experiments were able to narrow down the form of the soluble catalysing palladium species. [Pg.246]

A large number of heterogeneous catalysts have been tested under screening conditions (reaction parameters 60 °C, linoleic acid ethyl ester at an LHSV of 30 L/h, and a fixed carbon dioxide and hydrogen flow) to identify a suitable fixed-bed catalyst. We investigated a number of catalyst parameters such as palladium and platinum as precious metal (both in the form of supported metal and as immobilized metal complex catalysts), precious-metal content, precious-metal distribution (egg shell vs. uniform distribution), catalyst particle size, and different supports (activated carbon, alumina, Deloxan , silica, and titania). We found that Deloxan-supported precious-metal catalysts are at least two times more active than traditional supported precious-metal fixed-bed catalysts at a comparable particle size and precious-metal content. Experimental results are shown in Table 14.1 for supported palladium catalysts. The Deloxan-supported catalysts also led to superior linoleate selectivity and a lower cis/trans isomerization rate was found. The explanation for the superior behavior of Deloxan-supported precious-metal catalysts can be found in their unique chemical and physical properties—for example, high pore volume and specific surface area in combination with a meso- and macro-pore-size distribution, which is especially attractive for catalytic reactions (Wieland and Panster, 1995). The majority of our work has therefore focused on Deloxan-supported precious-metal catalysts. [Pg.231]

Intra- and intermolecular hydrogen transfer processes are important in a wide variety of chemical processes, ranging from free radical reactions (which make up the foundation of radiation chemistry) and tautomeriza-tion in the ground and excited states (a fundamental photochemical process) to bulk and surface diffusion (critical for heterogeneous catalytic processes). The exchange reaction H2 + H has always been the preeminent model for testing basic concepts of chemical dynamics theory because it is amenable to carrying out exact three-dimensional fully quantum mechanical calculations. This reaction is now studied in low-temperature solids as well. [Pg.152]

Self-sustained reaction rate oscillations have been shown to occur in many heterogeneous catalytic systems Cl—8]. By now, several comprehensive review papers have been published which deal with different aspects of the problem [3, 9, 10]. An impressive volume of theoretical work has also been accumulated [3, 9, ll], which tries to discover, understand, and model the underlying principles and causative factors behind the phenomenon of oscillations. Most of the people working in this area seem to believe that intrinsic surface processes and rates rather than the interaction between physical and chemical processes are responsible for this unexpected and interesting behavior. However, the majority of the available experimental literature (with a few exceptions [7, 13]) does not contain any surface data and information which could help us to critically test and further Improve the hypotheses and ideas set forth in the literature to explain this type of behavior. [Pg.77]

To analyze reaction mechanisms in complex catalytic systems, the application of micropulse techniques in small catalytic packed beds has been used. Christoffel [33] has given an introduction to these techniques in a comprehensive review of laboratory reactors for heterogeneous catalytic processes. Mtlller and Hofmann [59,61] have tested the dynamic method in the packed bed reactor to investigate complex heterogeneous reactions. Kinetic parameters have been evaluated by a method, which employs concentration step changes and the time derivatives of concentration transients at the reactor outlet as caused by a concentration step change at the reactor inlet. [Pg.103]

In the majority of catalytic reactions discussed in this chapter it has been possible to rationalize the reaction mechanism on the basis of the spectroscopic or structural identification of reaction intermediates, kinetic studies, and model reactions. Most of the reactions involve steps already discussed in Chapter 21, such as oxidative addition, reductive elimination, and insertion reactions. One may note, however, that it is sometimes difficult to be sure that a reaction is indeed homogeneous and not catalyzed heterogeneously by a decomposition product, such as a metal colloid, or by the surface of the reaction vessel. Some tests have been devised, for example the addition of mercury would poison any catalysis by metallic platinum particles but would not affect platinum complexes in solution, and unsaturated polymers are hydrogenated only by homogeneous catalysts. [Pg.1229]

A variety of heterogeneous bimetal catalysts prepared from bimetallic clusters and tested under typical catalytic reactions are shown in Table XV. Activities and selectivities diflerent from those aflbrded by conventionally prepared catalysts are observed. [Pg.348]

In order to study the effect of SCF operating conditions on reaction equilibrium and kinetics, an experimental facility has recently been completed and successfully tested as described in the following section. The heterogeneous catalytic isomerization of 1-hexene over Pt/ y-Al20o catalyst is chosen as the model reaction system i.e., a reaction system that undergoes simultaneous deactivation by coking. [Pg.309]

The procedure most frequently employed in heterogeneous catalysis consists in comparing the activity of catalysts determined by a standard testing reaction with some property of these catalysts. A less frequent procedure is based on the determination of the reactivity of several compounds on a single catalyst, which is subsequently related to some property of the reacting molecules (76). The third type of correlation of kinetic data involves the determination of the effect of solvents on catalytic reactions in the liquid state by means of a standard testing reaction on the same catalyst. [Pg.343]

Structural sensitivity of the catalytic reactions is one of the most important problems in heterogeneous catalysis [1,2]. It has been rather thoroughly studied for metals, while for oxides, especially for dispersed ones, situation is far less clear due to inherent complexity of studies of their bulk and surface atomic structure. In last years, successful development of such methods as HREM and STM along with the infrared spectroscopy of test molecules has formed a sound bases for elucidating this problem in the case of oxides. In the work presented, the results of the systematic studies of the bulk/surface defect structure of the oxides of copper, iron, cobalt, chromium, manganese as related to structural sensitivity of the reactions of carbon monoxide and hydrocarbons oxidation are considered. [Pg.1155]


See other pages where Heterogeneous catalytic reactions testing is mentioned: [Pg.263]    [Pg.510]    [Pg.240]    [Pg.167]    [Pg.83]    [Pg.85]    [Pg.2014]    [Pg.533]    [Pg.479]    [Pg.430]    [Pg.194]    [Pg.371]    [Pg.238]    [Pg.74]    [Pg.55]    [Pg.258]    [Pg.201]    [Pg.538]    [Pg.487]    [Pg.406]    [Pg.538]    [Pg.312]    [Pg.30]    [Pg.859]    [Pg.411]    [Pg.119]    [Pg.157]    [Pg.32]    [Pg.337]    [Pg.32]   


SEARCH



Catalytic heterogeneous

Catalytic testing

Heterogeneous catalytic reactions

Heterogeneous reaction

Reaction heterogeneous reactions

Reactions tests

© 2024 chempedia.info