Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Realistic Modeling

If we are aiming for a quantitatively correct prediction of the behavior and properties of a specific polymer, we need to employ an optimized and carefully validated force field for this specific polymer. In the literature one often finds simulation work using force fields that do not fulfill these criteria but where instead the authors use polymer-xy-like models. Although these models fail to reproduce the properties of the polymer they claim to model [Pg.7]

The classical force field represents the potential energy of a polymer chain, made of N atoms with coordinates given by the set r, as a sum of nonbonded interactions and contributions from all bond, valence bend, and dihedral interactions  [Pg.8]

More complicated cross-terms between the different intramolecular degrees of freedom are also employed in some force fields, but we will not consider them in the following. The dihedral term may also include four-center improper torsion or out-of-plane bending interactions that occur at sp2 hybridized centers.29 [Pg.8]

The nonbonded interactions commonly consist of a sum of two-body repulsion and dispersion energy terms between atoms that are often of the Lennard-Jones form in addition to the energy from the interactions between fixed partial atomic or ionic charges (Coulomb interaction) [Pg.8]

The dispersion interactions are weak compared with repulsion, but they are longer range, which results in an attractive well with a depth e at an interatomic separation of am n = 21/6a. The interatomic distance at which the net potential is zero is often used to define the atomic diameter. In addition to the Lennard-Jones form, the exponential-6 form of the dispersion-repulsion interaction, [Pg.8]


Hard-sphere models lack a characteristic energy scale and, hence, only entropic packing effects can be investigated. A more realistic modelling has to take hard-core-like repulsion at small distances and an attractive interaction at intennediate distances into account. In non-polar liquids the attraction is of the van der Waals type and decays with the sixth power of the interparticle distance r. It can be modelled in the fonn of a Leimard-Jones potential Fj j(r) between segments... [Pg.2365]

Derenyi I and Vicsek T 1998 Realistic models of biological motion Physica A 249 397-406... [Pg.2848]

These various techniques were recently applied to molecular simulations [11, 20]. Both of these articles used the rotation matrix formulation, together with either the explicit reduction-based integrator or the SHAKE method to preserve orthogonality directly. In numerical experiments with realistic model problems, both of these symplectic schemes were shown to exhibit vastly superior long term stability and accuracy (measured in terms of energy error) compared to quaternionic schemes. [Pg.352]

Since theoretical calcination of effectiveness is based on a hardly realistic model of a system of equal-sized cylindrical pores and a shalq assumption for the tortuosity factor, in some industrially important cases the effectiveness has been measured directly. For ammonia synthesis by Dyson and Simon (Ind. Eng. Chem. Fundam., 7, 605 [1968]) and for SO9 oxidation by Kadlec et aJ. Coll. Czech. Chem. Commun., 33, 2388, 2526 [1968]). [Pg.2096]

Today s high technology products and growing international competition require knowledgeable design decisions based on realistic models that include manufacturability requirements. A suitable and coherent tolerance allocation methodology... [Pg.109]

Toxicology Animals Maximal dose-response data Realistic models of human disease ... [Pg.107]

The model-dependent aspect of ellipsometric analysis makes it a difficult technique. Several different models fit to one set of data may produce equivalendy low MSEs. The user must integrate and evaluate all available information about the sample to develop a physically realistic model. Another problem in applying ellip-sometry is determining when the parameters of the model are mathematically correlated for example, a thicker film but lower index of refraaion might give the same MSE as some other combinations of index and thickness. That is, the answer is not always unique. [Pg.405]

The zone model has the following basic limitations 1) complex enclosure geometries cannot be addres.sed, 2) forced ventilation cannot be realistically modeled using simple unit models, 7 ) burning other combustibles remote from the initiating source are not modeled, and 4) siipprcssion activities are not included. [Pg.199]

While the smooth substrate considered in the preceding section is sufficiently reahstic for many applications, the crystallographic structure of the substrate needs to be taken into account for more realistic models. The essential complications due to lack of transverse symmetry can be dehneated by the following two-dimensional structured-wall model an ideal gas confined in a periodic square-well potential field (see Fig. 3). The two-dimensional lamella remains rectangular with variable dimensions Sy. and Sy and is therefore not subject to shear stresses. The boundaries of the lamella coinciding with the x and y axes are anchored. From Eqs. (2) and (10) one has... [Pg.12]

However, we also need to discuss how the attractive interactions between species can be included in the theory of partly quenched systems. These interactions comprise an intrinsic feature of realistic models for partially quenched fluid systems. In particular, the model for adsorption of methane in xerosilica gel of Kaminsky and Monson [41] is characterized by very strong attraction between matrix obstacles and fluid species. Besides, the fluid particles attract each other via the Lennard-Lones potential. Both types of attraction (the fluid-matrix and fluid-fluid) must be included to gain profound insight into the phase transitions in partly quenched media. The approach of Ford and Glandt to obtain the chemical potential utilizing... [Pg.304]

Nevertheless, large-scale phenomena and complicated phase diagrams cannot be investigated within realistic models at the moment, and this is not very likely to change soon. Therefore, theorists have often resorted to coarse-grained models, which capture the features of the substances believed to be essential for the properties of interest. Such models can provide qualitative and semiquantitative insight into the physics of these materials, and hopefully establish general relationships between microscopic and thermodynamic quantities. [Pg.637]

We close these introductory remarks with a few comments on the methods which are actually used to study these models. They will for the most part be mentioned only very briefly. In the rest of this chapter, we shall focus mainly on computer simulations. Even those will not be explained in detail, for the simple reason that the models are too different and the simulation methods too many. Rather, we refer the reader to the available textbooks on simulation methods, e.g.. Ref. 32-35, and discuss only a few technical aspects here. In the case of atomistically realistic models, simulations are indeed the only possible way to approach these systems. Idealized microscopic models have usually been explored extensively by mean field methods. Even those can become quite involved for complex models, especially for chain models. One particularly popular and successful method to deal with chain molecules has been the self-consistent field theory. In a nutshell, it treats chains as random walks in a position-dependent chemical potential, which depends in turn on the conformational distributions of the chains in... [Pg.639]

A realistic model of a solution requires at least several hundred solvent molecules. To prevent the outer solvent molecules from boiling off into space, and minimizing surface effects, periodic boundary conditions are normally employed. The solvent molecules are placed in a suitable box, often (but not necessarily) having a cubic geometry (it has been shown that simulation results using any of the five types of space filling polyhedra are equivalent ). This box is then duplicated in all directions, i.e. the central box is suiTounded by 26 identical cubes, which again is surrounded by 98 boxes etc. If a... [Pg.386]

The simplest shape for the cavity is a sphere or possibly an ellipsoid. This has the advantage that the electrostatic interaction between M and the dielectric medium may be calculated analytically. More realistic models employ moleculai shaped cavities, generated for example by interlocking spheres located on each nuclei. Taking the atomic radius as a suitable factor (typical value is 1.2) times a van der Waals radius defines a van der Waals surface. Such a surface may have small pockets where no solvent molecules can enter, and a more appropriate descriptor may be defined as the surface traced out by a spherical particle of a given radius rolling on the van der Waals surface. This is denoted the Solvent Accessible Surface (SAS) and illustrated in Figm e 16.7. [Pg.393]

To constitute the We number, characteristic values such as the drop diameter, d, and particularly the interfacial tension, w, must be experimentally determined. However, the We number can also be obtained by deduction from mathematical analysis of droplet deforma-tional properties assuming a realistic model of the system. For a shear flow that is still dominant in the case of injection molding, Cox [25] derived an expression that for Newtonian fluids at not too high deformation has been proven to be valid ... [Pg.695]

The calculations were performed in the framework of a one-step model of photoe-mission derived from the one originally formulated by Pendry [1]. Nowadays the model includes relativistic effects [2-5], the possibility of having several atoms per unit cell [6], different types of layers and a realistic model for the surface potential [7]. It is further possible to consider ov erlayers on a surface. We will not review the theory here, which has been done already in several publications [2,4,6,8], but instead concentrate on the results. [Pg.245]

Ulam Proposed need for having more realistic models for the behavior of complex extended systems... [Pg.4]

While the LEs are particularly relevant for the kind of static trench warfare and artillery duels that characterized most of World War I, they are too simple and lack the spatial degrees of freedom to realistically model modern combat. The fundamental problem is that they idealize combat much in the same way as Newton s laws idealize physics. [Pg.593]

Although the basic concept of macromolecular networks and entropic elasticity [18] were expressed more then 50 years ago, work on the physics of rubber elasticity [8, 19, 20, 21] is still active. Moreover, the molecular theories of rubber elasticity are advancing to give increasingly realistic models for polymer networks [7, 22]. [Pg.321]

In the previous chapter we considered a rather simple solvent model, treating each solvent molecule as a Langevin-type dipole. Although this model represents the key solvent effects, it is important to examine more realistic models that include explicitly all the solvent atoms. In principle, we should adopt a model where both the solvent and the solute atoms are treated quantum mechanically. Such a model, however, is entirely impractical for studying large molecules in solution. Furthermore, we are interested here in the effect of the solvent on the solute potential surface and not in quantum mechanical effects of the pure solvent. Fortunately, the contributions to the Born-Oppenheimer potential surface that describe the solvent-solvent and solute-solvent interactions can be approximated by some type of analytical potential functions (rather than by the actual solution of the Schrodinger equation for the entire solute-solvent system). For example, the simplest way to describe the potential surface of a collection of water molecules is to represent it as a sum of two-body interactions (the interac-... [Pg.74]

For multiple liquid phases (e.g. suspension processes) or increasing concentrations of polymers, some more realistic models are desirable (van Laar, Flory-Huggins, Wilson). ... [Pg.333]

The flow-dynamics and mass-transport processes can be expressed mathematically and realistic models obtained to be used in the predictions of a CVD operation and in the design of reactors. [Pg.55]

A more realistic model of this solution was developed in 1950 by Rory and Krigbaum, and assumes that the polymer consists of approximately spherical clusters of segments. These clusters have a maximum density of segments at their centre and this density decreases with distance from the centre in an approximately Gaussian distribution. [Pg.71]

Once wells have been drilled into the formation, the local properties of the reservoir rocks and fluids can be determined. To constmct a realistic model of the reservoir, its properties over its total extent— not just at the well sites—must be known. One way of estimating these properties is to match production histories at the wells with those predicted by the reservoir model. This is a classic ill-posed inverse problem that is very difficult to solve. [Pg.155]

The system used in the simulations usually consists of solid walls and lubricant molecules, but the specific arrangement of the system depends on the problem under investigation. In early studies, hard spherical molecules, interacting with each other through the Lennard-Jones (L-J) potential, were adopted to model the lubricant [27], but recently we tend to take more realistic models for describing the lubricant molecules. The alkane molecules with flexible linear chains [28,29] and bead-spring chains [7,30] are the examples for the most commonly used molecular architectures. The inter- and intra-molecular potentials, as well as the interactions between the lubricant molecule and solid wall, have to be properly defined in order to get reliable results. Readers who intend to learn more about the specific techniques of the simulations are referred to Refs. [27-29]. [Pg.86]

There are yet many problems to be solved to build a more realistic model for network formation, and more experimental information will be necessary in order to clarify these complicated phenomena. We do however believe these kinetic models will provide greater insight into the phenomenon of network formation. [Pg.253]


See other pages where Realistic Modeling is mentioned: [Pg.17]    [Pg.20]    [Pg.834]    [Pg.890]    [Pg.2832]    [Pg.369]    [Pg.186]    [Pg.98]    [Pg.133]    [Pg.237]    [Pg.354]    [Pg.450]    [Pg.425]    [Pg.46]    [Pg.354]    [Pg.441]    [Pg.559]    [Pg.392]    [Pg.929]    [Pg.594]    [Pg.240]    [Pg.166]    [Pg.263]    [Pg.138]    [Pg.374]   


SEARCH



Realistic

Realists

© 2024 chempedia.info