Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic spectroscopy graphite furnace

Autosamplers in chromatography and graphite furnace atomic spectroscopy, for example, have improved injection precision by a factor of 3-10 compared with that attained by humans. [Pg.84]

A technique is any chemical or physical principle that can be used to study an analyte. Many techniques have been used to determine lead levels. For example, in graphite furnace atomic absorption spectroscopy lead is atomized, and the ability of the free atoms to absorb light is measured thus, both a chemical principle (atomization) and a physical principle (absorption of light) are used in this technique. Chapters 8-13 of this text cover techniques commonly used to analyze samples. [Pg.36]

Two colorimetric methods are recommended for boron analysis. One is the curcumin method, where the sample is acidified and evaporated after addition of curcumin reagent. A red product called rosocyanine remains it is dissolved in 95 wt % ethanol and measured photometrically. Nitrate concentrations >20 mg/L interfere with this method. Another colorimetric method is based upon the reaction between boron and carminic acid in concentrated sulfuric acid to form a bluish-red or blue product. Boron concentrations can also be deterrnined by atomic absorption spectroscopy with a nitrous oxide—acetjiene flame or graphite furnace. Atomic emission with an argon plasma source can also be used for boron measurement. [Pg.231]

D. Wienke, T. Vijn and L. Buydens, Quality self-monitoring of intelligent analyzers and sensor based on an extended Kalman filter an application to graphite furnace atomic absorption spectroscopy. Anal. Chem., 66 (1994) 841-849. [Pg.604]

Many of the published methods for the determination of metals in seawater are concerned with the determination of a single element. Single-element methods are discussed firstly in Sects. 5.2-5.73. However, much of the published work is concerned not only with the determination of a single element but with the determination of groups of elements (Sect. 5.74). This is particularly so in the case of techniques such as graphite furnace atomic absorption spectrometry, Zeeman background-corrected atomic absorption spectrometry, and inductively coupled plasma spectrometry. This also applies to other techniques, such as voltammetry, polarography, neutron activation analysis, X-ray fluroescence spectroscopy, and isotope dilution techniques. [Pg.128]

FLAA, flame atomic absorption, is termed AAS in most instances in this book and in other places ICP, inductively coupled plasma AES, atomic emission spectroscopy GFAA, graphite furnace atomic absorption ICP-MS, ICP coupled to mass spectroscopy. [Pg.237]

High-performance liquid chromatography coupled with fluorescence detection [106, 107] or ion-exchange high-performance liquid chromatography with detection by graphite furnace atomic absorption spectroscopy [108] proved to be sensitive methods, but may lack from limitations in separation power and ease of identification of unknown products. [Pg.420]

The major anions and cations in seawater have a significant influence on most analytical protocols used to determine trace metals at low concentrations, so production of reference materials in seawater is absolutely essential. The major ions interfere strongly with metal analysis using graphite furnace atomic absorption spectroscopy (GFAAS) and inductively coupled plasma mass spectroscopy (ICP-MS) and must be eliminated. Consequently, preconcentration techniques used to lower detection limits must also exclude these elements. Techniques based on solvent extraction of hydrophobic chelates and column preconcentration using Chelex 100 achieve these objectives and have been widely used with GFAAS. [Pg.50]

GFAAS Graphite Furnace Atomic Absorption Spectroscopy... [Pg.137]

Hansson HC, Ekholm AKP, Ross HB. 1988. Rainwater analysis A comparison between proton-induced x-ray emission and graphite furnace atomic absorption spectroscopy. Environmental Science and Technology 22 527-531. [Pg.235]

Wet chemical methods involve sophisticated sample preparation and standardization with National Bureau of Standards reference materials but are not difficult for the analytical chemist nor necessarily time consuming (Figure 1). The time from sample preparation to final results for various analytical methods, such as GFAA (graphite furnace atomic absorption), ICP (inductively coupled plasma spectroscopy), ICP-MS (ICP-mass spectrometry), and colorimetry, ranges from 0.5 to 5.0 h, depending on the technique used. Colorimetry is the method of choice because of its extreme accuracy. Typical results of the colorimetric analysis of doped oxides are shown in Tables I and II, which show the accuracy and precision of the measurements. [Pg.515]

The GECE sensors were used for lead determination in real water samples suspected to be contaminated with lead obtained from water suppliers. The same samples were previously measured by three other methods a potentiometric FIA system with a lead ion-selective-electrode as detector (Pb-ISE) graphite furnace atomic absorption spectrophotometry (AAS) inductively coupled plasma spectroscopy (ICP). The results obtained for lead determination are presented in Table 7.1. The accumulation times are given for each measured sample in the case of DPASV. Calibration plots were used to determine the lead concentration. GEC electrode results were compared with each of the above methods by using paired -Test. The results obtained show that the differences between the results of GECE compared to other methods were not significant. The improvement of the reproducibility of the methods is one of the most important issues in the future research of these materials. [Pg.151]

AMS = accelerated mass spectroscopy EDTA = ethylene diamine tetra acetic acid GFAAS = graphite furnace atomic absorption spectrometry ICP-AES = inductively coupled plasma - atomic emission spectroscopy NAA = neutron activation analysis ETAAS = electrothermal atomic absorption spectrometry SEC/ICP-MS = size-exclusion chromatography/ICP-AES/mass spectrometry HLPC/ICP-AES = high-performance liquid chromatography/ICP-AES LAMMA = laser ablation microprobe mass analysis NA = not applicable ppq = parts per quadrillion... [Pg.261]

Sounderajan, S., A.C. Udas, and B. Venkataramani. 2007. Characterization of arsenic(V) and arsenic(III) in water samples using ammonium molybdate and estimation by graphite furnace atomic absorption spectroscopy. J. Hazard. Mater. 149 238-242. [Pg.135]

In EMEP, ICP-MS is dehned as the reference technique. The exception is mercury, where cold vapor atomic fluorescence spectroscopy (CV-AFS) is chosen. Other techniques may be used, if they are shown to yield results of a quality equivalent to that obtainable with the recommended method. These other methods include graphite furnace atomic absorption spectroscopy (GF-AAS), flame-atomic absorption spectroscopy (F-AAS), and CV-AFS. The choice of technique depends on the detection limits desired. ICP-MS has the lowest detection limit for most elements and is therefore suitable for remote areas. The techniques described in this manual are presented with minimum detection limits. Table 17.2 lists the detection limits for the different methods. [Pg.405]

GC, gas chromatography HPLC, high-performance liquid chromatography MS, mass spectroscopy AA, atomic absorption GFAA, graphite furnace atomic absorption ICP, inductively coupled plasma UV-VIS, ultraviolet-visible molecular absorption spectroscopy IC, ion chromatography. [Pg.4]

Many metal analyses are carried out using atomic spectroscopic methods such as flame or graphite furnace atomic absorption or inductively coupled plasma atomic emission spectroscopy (ICP-AES). These methods commonly require the sample to be presented as a dilute aqueous solution, usually in acid. ICP-mass spectrometry requires similar preparation. Other samples may be analyzed in solid form. For x-ray fluorescence, the solid sample may require dilution with a solid buffer material to produce less variation between samples and standards, reducing matrix effects. A solid sample is also preferred for neutron activation analyses and may be obtained from dilute aqueous samples by precipitation methods. [Pg.229]


See other pages where Atomic spectroscopy graphite furnace is mentioned: [Pg.144]    [Pg.144]    [Pg.36]    [Pg.45]    [Pg.177]    [Pg.232]    [Pg.2206]    [Pg.625]    [Pg.443]    [Pg.448]    [Pg.455]    [Pg.231]    [Pg.10]    [Pg.177]    [Pg.526]    [Pg.466]    [Pg.258]    [Pg.2]    [Pg.399]    [Pg.407]    [Pg.416]    [Pg.165]    [Pg.92]    [Pg.95]   
See also in sourсe #XX -- [ Pg.234 ]

See also in sourсe #XX -- [ Pg.234 ]




SEARCH



Atomic spectroscopy

Furnace atomizers

Graphite atomic spectroscopy

Graphite atomizer

© 2024 chempedia.info