Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier Transform Infrared FTIR

Generally, this technique is used to analyze samples that are available either in small quantity or a small entity. Gels within a rubber sample, have to be microtomed (i.e., cut into very thin slices) and mounted in KBr plates in a Microscopy Lab. Samples contaminated with inorganic components are usually analyzed by both X-ray and FTIR Microscope. Sample size 20 microns can be analyzed by the FTIR-microscope. [Pg.64]


For radiofrequency and microwave radiation there are detectors which can respond sufficiently quickly to the low frequencies (<100 GHz) involved and record the time domain specttum directly. For infrared, visible and ultraviolet radiation the frequencies involved are so high (>600 GHz) that this is no longer possible. Instead, an interferometer is used and the specttum is recorded in the length domain rather than the frequency domain. Because the technique has been used mostly in the far-, mid- and near-infrared regions of the spectmm the instmment used is usually called a Fourier transform infrared (FTIR) spectrometer although it can be modified to operate in the visible and ultraviolet regions. [Pg.55]

Analytical investigations may be undertaken to identify the presence of an ABS polymer, characterize the polymer, or identify nonpolymeric ingredients. Fourier transform infrared (ftir) spectroscopy is the method of choice to identify the presence of an ABS polymer and determine the acrylonitrile—butadiene—styrene ratio of the composite polymer (89,90). Confirmation of the presence of mbber domains is achieved by electron microscopy. Comparison with available physical property data serves to increase confidence in the identification or indicate the presence of unexpected stmctural features. Identification of ABS via pyrolysis gas chromatography (91) and dsc ((92) has also been reported. [Pg.204]

Spectroscopy. Infrared spectroscopy (48) permits stmctural definition, eg, it resolves the 2,2 - from the 2,4 -methylene units in novolak resins. However, the broad bands and severely overlapping peaks present problems. For uncured resins, nmr rather than ir spectroscopy has become the technique of choice for microstmctural information. However, Fourier transform infrared (ftir) gives useful information on curing phenoHcs (49). Nevertheless, ir spectroscopy continues to be used as one of the detectors in the analysis of phenoHcs by gpc. [Pg.299]

Fourier Transform Infrared (ftir) Spectroscopy. Ftir is a sensitive tool for... [Pg.193]

Infrared spectroscopy, including Fourier-transform infrared (FTIR) spectroscopy, is one of the oldest techniques used for surface analysis. ATR has been used for many years to probe the surface composition of polymers that have been surface-modified by an etching process or by deposition of a film. RAIR has been widely used to characterize thin films on the surfaces of specular reflecting substrates. FTIR has numerous characteristics that make it an appropriate technique for... [Pg.243]

Fourier transform infrared (FTIR) analyzers can be used for industrial applications and m situ measurements in addition to conventional laboratory use. Industrial instruments are transportable, rugged and relatively simple to calibrate and operate. They are capable of analyzing many gas components and determining their concentrations, practically continuously. FTIR analyzers are based on the spectra characterization of infrared light absorbed by transitions in vibrational and rotational energy levels of heteroatomic molecules. [Pg.1303]

Such effects principally cannot be observed in multi band detectors such as a UV diode array detector or a Fourier transform infrared (FTIR) detector because all wavelengths are measured under the same geometry. For all other types of detectors, in principle, it is not possible to totally remove these effects of the laminar flow. Experiments and theoretical calculations show (8) that these disturbances can only be diminished by lowering the concentration gradient per volume unit in the effluent, which means that larger column diameters are essential for multiple detection or that narrow-bore columns are unsuitable for detector combinations. Disregarding these limitations can lead to serious misinterpretations of GPC results of multiple detector measurements. Such effects are a justification for thick columns of 8-10 mm diameter. [Pg.441]

The use of detection methods sueh as mass speetrometry (MS) and Fourier-transform infrared (FTIR) speetroseopy ean be very useful with respeet to the quality... [Pg.237]

In the following, some examples of applications of Fourier transform infrared (FTIR) Spectroscopy and of solid-state nuclear magnetic resonance (NMR) to the study of polymorphism in polymers are described. [Pg.207]

Infrared spectroelectrochemical methods, particularly those based on Fourier transform infrared (FTIR) spectroscopy can provide structural information that UV-visible absorbance techniques do not. FTIR spectroelectrochemistry has thus been fruitful in the characterization of reactions occurring on electrode surfaces. The technique requires very thin cells to overcome solvent absorption problems. [Pg.44]

Fourier transform infrared (FTIR) spectroscopy (NaCl) shows no remaining carboxylic acid (1696 cm-1, carbonyl) but only ester groups (1736 cm 1, carbonyl) Mn(SEC) = 6530 Mn(1H NMR) = 1640 theory for third generation Mn = 2570.65 Polyesters of higher generation were synthesized according to this pseudo-one-step procedure and were analyzed by SEC, VPO, and 111 NMR.65... [Pg.116]

An amine-terminated poly ether (ATPE) is prepared as follows. Charge poly(tetramethylene oxide) diol (PolyTHF 1000, BASF, 75.96 g, 0.0759 m) to a 500-mL three-neck round-bottom flask fitted with a thermocouple, a mechanical stirrer, and a vacuum port. Add tert-butylacetoacetate (24.04 g, 0.1582 m) and apply vacuum. Heat at 175° C for 4 h, Fourier transform infrared (FTIR) analysis should indicate complete loss of the polyol OH absorption at 3300 cm. The room temperature viscosity of the product should be about 520 mPa-s. React this acetoacetylated product (85.5 g, 0.0649 m) with cyclohexylamine (14.5 g, 0.1465 m) at 110° C under vacuum for several hours. Cool the resultant cyclohexylaminocrotonate poly ether product to room temperature (1790 mPa-s at room temperature). [Pg.255]

Fourier transform infrared (FTIR) spectroscopy is the most popular method for determining the imidization process in the solid state and identifying specific substituents on the macromolecular backbone (e.g., CN, SO3H, CO, SO2).131 A method for calculating the diermal imidization extent based on FTIR data has been reported by Pride.132 Raman spectroscopy was used on the model study of PMDA-ODA condensation, and the possible formation of an inline bond by reaction of an amino group with an imide carboxyle was evidenced.133... [Pg.300]

Formaldehyde-to-phenol ratios, 404 V-Formyl amines, 158 Fourier transform infrared (FTIR) spectrometry, 116, 300, 387, 407-408 Fradet, Alain, 17 Free-radical copolymerization, 59 Friedel-Crafts acrylation polymerization, 332-334... [Pg.584]

Friedel-Crafts catalysts, 329, 331 Friedel-Crafts reaction, 297, 361 Front-end reactions, 235 FT Raman spectroscopy, 387 FTIR spectrometry. See Fourier transform infrared (FTIR) spectrometry Fuel cells, 272-273 Full prepolymers, 236, 237 Functionalized polyolefins, 459-460... [Pg.584]

Impingement mixing, 200 Implants, bioresorbable, 27 Indentation force deflection (IFD) test, 244 Infrared (IR) spectroscopy, 91, 162, 300, 490. See also Fourier transform infrared (FTIR) spectrometry Ingold s classification, 60-61 Inherent viscosity, 161-162 Injection molding, of polyamides, 136,... [Pg.586]

Spectroscopy, 490. See also 13C NMR spectroscopy FT Raman spectroscopy Fourier transform infrared (FTIR) spectrometry H NMR spectroscopy Infrared (IR) spectroscopy Nuclear magnetic resonance (NMR) spectroscopy Positron annihilation lifetime spectroscopy (PALS) Positron annihilation spectroscopy (PAS) Raman spectroscopy Small-angle x-ray spectroscopy (SAXS) Ultraviolet spectroscopy Wide-angle x-ray spectroscopy (WAXS)... [Pg.601]

FIGURE 3.5 Fourier Transform infrared (FTIR) spectra of acrylic rubber (ACM)-siUca hybrid nanocomposites. The numbers after ACM (10 and 50) indicate the wt% tetraethoxysilane (TEOS) concentration. The letters preceding the numbers indicate the ACM-silica samples cross-linked from benzoyl peroxide (B) and a mixed cross-linker hexamethylene diamine carbamate and ammonium benzoate (D). The numbers over the absorption peaks are the wave numbers corresponding to absorbance of those peaks. (From Bandyopadhyay, A., Bhowmick, A.K., and De Sarkar, M., J. Appl. Polym. Sci., 93, 2579, 2004. Courtesy of Wiley InterScience.)... [Pg.64]

Spectroscopic techniques as 13C-NMR [28], ESR [29], pyrolysis-GC/MS, and pyrolysis-Fourier transform infrared (FTIR) [30], x-ray diffraction [31], and SEM [32] techniques are also used to study mbber oxidation. [Pg.469]

Surface forces measurement is a unique tool for surface characterization. It can directly monitor the distance (D) dependence of surface properties, which is difficult to obtain by other techniques. One of the simplest examples is the case of the electric double-layer force. The repulsion observed between charged surfaces describes the counterion distribution in the vicinity of surfaces and is known as the electric double-layer force (repulsion). In a similar manner, we should be able to study various, more complex surface phenomena and obtain new insight into them. Indeed, based on observation by surface forces measurement and Fourier transform infrared (FTIR) spectroscopy, we have found the formation of a novel molecular architecture, an alcohol macrocluster, at the solid-liquid interface. [Pg.3]

Fourier transform infrared (FTIR) spectroscopy is a powerful analytical tool for characterizing and identifying organic molecules. The IR spectrum of an organic compound serves... [Pg.150]

Xiao H-K, Levine SP, D Arcy JB, et al. 1990. Comparison of the Fourier transform infrared (FTIR) spectrophotometer and the Miniature Infrared Analyzer (MIRAN ) for the determination of trichloroethylene (TCE) in the presence of Freon -113 in workplace air. Am Ind Hyg Assoc J 51 395-401. [Pg.298]

Many methods are currently available for the qualitative analysis of anthocyanins including hydrolysis procedures," evaluation of spectral characteristics, mass spectroscopy (MS), " nuclear magnetic resonance (NMR), and Fourier transform infrared (FTIR) spectroscopy. - Frequently a multi-step procedure will be used for... [Pg.486]

The availability of the purified transporter in large quantity has enabled investigation of its secondary structure by biophysical techniques. Comparison of the circular dichroism (CD) spectrum of the transporter in lipid vesicles with the CD spectra of water-soluble proteins of known structure indicated the presence of approximately 82% a-helix, 10% ) -turns and 8% other random coil structure [97]. No / -sheet structure was detected either in this study or in a study of the protein by the same group using polarized Fourier transform infrared (FTIR) spectroscopy [98]. In our laboratory FTIR spectroscopy of the transporter has similarly revealed that... [Pg.184]

We have found new CO-tolerant catalysts by alloying Pt with a second, nonprecious, metal (Pt-Fe, Pt-Co, Pt-Ni, etc.) [Fujino, 1996 Watanabe et al., 1999 Igarashi et al., 2001]. In this section, we demonstrate the properties of these new alloy catalysts together with Pt-Ru alloy, based on voltammetric measurements, electrochemical quartz crystal microbalance (EQCM), electrochemical scanning tunneling microscopy (EC-STM), in situ Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). [Pg.318]

Fourier transform infrared (FTIR) spectroscopy was performed oj a Nicolet 10DX spectrometer. Nuclear magnetic resonance ( H) characterization was accomplished using an IBM 270 SL. Both techniques can successfully be utilized to analyze both the diblock precursors as well as the derived acid containing polymers. [Pg.263]


See other pages where Fourier Transform Infrared FTIR is mentioned: [Pg.148]    [Pg.410]    [Pg.541]    [Pg.387]    [Pg.30]    [Pg.165]    [Pg.216]    [Pg.403]    [Pg.35]    [Pg.36]    [Pg.107]    [Pg.365]    [Pg.469]    [Pg.169]    [Pg.233]    [Pg.280]    [Pg.520]    [Pg.619]    [Pg.695]    [Pg.912]   
See also in sourсe #XX -- [ Pg.289 ]

See also in sourсe #XX -- [ Pg.161 , Pg.162 , Pg.163 , Pg.164 , Pg.165 , Pg.166 , Pg.167 , Pg.168 , Pg.169 , Pg.170 , Pg.171 , Pg.172 , Pg.173 ]

See also in sourсe #XX -- [ Pg.595 ]

See also in sourсe #XX -- [ Pg.289 ]




SEARCH



Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR

FTIR spectra collection technique Fourier transform infrared

FTIR » Fourier transform

FTIRS (Fourier transform infrared

FTIR—See Fourier transform infrared

FTIR—See Fourier transform infrared spectroscopy

Fourier Transform Infrared (FTIR) Imaging

Fourier Transformation Infrared Spectrometer TG-FTIR)

Fourier Transformed Infrared Spectroscopy FTIR)

Fourier transform infrared

Fourier transform infrared FTIR) microscopy

Fourier transform infrared absorption, FTIR

Fourier transform infrared resonance (FTIR

Fourier transform infrared spectrometry, (FTIR

Fourier transform infrared spectroscopy ATR-FTIR)

Fourier transform infrared spectroscopy FTIR)

Fourier transform infrared spectroscopy FTIRS)

Fourier transform infrared spectroscopy temperature-change FTIR

Fourier transform infrared, FTIR band assignment

Fourier-transform infrared transmittance FTIR)

Gas chromatography-Fourier transform infrared GC-FTIR)

Single Fourier transform infrared, FTIR

© 2024 chempedia.info