Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amine-terminated

Studies of the particle—epoxy interface and particle composition have been helphil in understanding the mbber-particle formation in epoxy resins (306). Based on extensive dynamic mechanical studies of epoxy resin cure, a mechanism was proposed for the development of a heterophase morphology in mbber-modifted epoxy resins (307). Other functionalized mbbers, such as amine-terminated butadiene—acrylonitrile copolymers (308) and -butyl acrylate—acryhc acid copolymers (309), have been used for toughening epoxy resins. [Pg.422]

Flexibilized epoxy resins are important structural adhesives [69]. Liquid functionally terminated nitrile rubbers are excellent flexibilizing agents for epoxy resins. This liquid nitrile rubber can be reacted into the epoxy matrix if it contains carboxylated terminated functionalities or by adding an amine terminated rubber. The main effects produced by addition of liquid nitrile rubber in epoxy formulations is the increase in T-peel strength and in low-temperature lap shear strength, without reducing the elevated temperature lap shear. [Pg.660]

This reaction is reported to proceed at a rapid rate, with over 25% conversion in less than 0.001 s [3]. It can also proceed at very low temperatures, as in the middle of winter. Most primary substituted urea linkages, referred to as urea bonds, are more thermally stable than urethane bonds, by 20-30°C, but not in all cases. Polyamines based on aromatic amines are normally somewhat slower, especially if there are additional electron withdrawing moieties on the aromatic ring, such as chlorine or ester linkages [4]. Use of aliphatic isocyanates, such as methylene bis-4,4 -(cyclohexylisocyanate) (HnMDI), in place of MDI, has been shown to slow the gelation rate to about 60 s, with an amine chain extender present. Sterically hindered secondary amine-terminated polyols, in conjunction with certain aliphatic isocyanates, are reported to have slower gelation times, in some cases as long as 24 h [4]. [Pg.763]

Aromatic amine-terminated poly(tetrahydrofuran) — 650 MW Amine chain extender —4,4 -methylene bis(3-chloro-2,6,-diethyl aniline) Note the amine chain extender must be melted into the polyol at 160°C for 3 hrs under stirring, until completely melted. Once cooled, the chain extender remains liquid in the polyol. [Pg.796]

St. Clair et. al. investigated a series of maleimide and nadimide terminated polyimides and developed LARC-13 [8,9]. Changing the terminal group from maleimide to nadimide, the value of the lap shear strength of a titanium lap shear joint increased from 7 to 19 MPa [9]. They also added an elastomeric component to the adhesive formulation. The introduction of 15 wt% of a rubbery component, ATBN (amine terminated butadiene nitrile polymer) and ADMS (aniline terminated polydimethyl siloxane) enhanced the adhesive properties as follows 19 MPa to 25 MPa (ATBN) titanium T-peel strength 0.2 kN/m to 1.4... [Pg.820]

Table 5 Effects of Various Phenolic Modified Polypropylenes on the Properties of NBR-Polypropylene Compositions Containing Amine Terminated NBR... Table 5 Effects of Various Phenolic Modified Polypropylenes on the Properties of NBR-Polypropylene Compositions Containing Amine Terminated NBR...
Coran and Patel [74] investigated the reactive com-patibilization of PP-NBR and HDPE-NBR blends using phenolic modified polyolefin, maleic anhydride modified polyolefin, and amine terminated nitrile rubber as reactive components. Dynamic vulcanization was also inves-... [Pg.678]

Scheme 4 Reaction scheme for the formation of graft copolymer between amine terminated NBR and modified polypropylenes. Scheme 4 Reaction scheme for the formation of graft copolymer between amine terminated NBR and modified polypropylenes.
ATBN - amine terminated nitrile rubber X - Flory Huggins interaction parameter CPE - carboxylated polyethylene d - width at half height of the copolymer profile given by Kuhn statistical segment length DMAE - dimethyl amino ethanol r - interfacial tension reduction d - particle size reduction DSC - differential scanning calorimetry EMA - ethylene methyl acrylate copolymer ENR - epoxidized natural rubber EOR - ethylene olefin rubber EPDM - ethylene propylene diene monomer EPM - ethylene propylene monomer rubber EPR - ethylene propylene rubber EPR-g-SA - succinic anhydride grafted ethylene propylene rubber... [Pg.682]

Polybutadienes, polycaprolactones, polycarbonates, and amine-terminated polyethers (ATPEs) are shown in Scheme 4.4 as examples of other commercially available polyols. They are all specialty materials, used in situations where specific property profiles are required. For example, ATPEs are utilized in spray-applied elastomers where fast-reacting, high-molecular-weight polyamines give quick gel times and rapid viscosity buildup. Polycarbonates are used for implantation devices because polyuredtanes based on them perform best in this very demanding environment. Polycaprolactones and polybutadienes may be chosen for applications which require exceptional light stability, hydrolysis resistance, and/or low-temperature flexibility. [Pg.213]

An amine-terminated poly ether (ATPE) is prepared as follows. Charge poly(tetramethylene oxide) diol (PolyTHF 1000, BASF, 75.96 g, 0.0759 m) to a 500-mL three-neck round-bottom flask fitted with a thermocouple, a mechanical stirrer, and a vacuum port. Add tert-butylacetoacetate (24.04 g, 0.1582 m) and apply vacuum. Heat at 175° C for 4 h, Fourier transform infrared (FTIR) analysis should indicate complete loss of the polyol OH absorption at 3300 cm. The room temperature viscosity of the product should be about 520 mPa-s. React this acetoacetylated product (85.5 g, 0.0649 m) with cyclohexylamine (14.5 g, 0.1465 m) at 110° C under vacuum for several hours. Cool the resultant cyclohexylaminocrotonate poly ether product to room temperature (1790 mPa-s at room temperature). [Pg.255]

Atomic force morphology (AFM), 490 ATPEs. See Amine-terminated polyethers (ATPEs)... [Pg.577]

Detailed information on the copolymerization of cyclic trifluoropropylmethyl-siloxane trimer and octamethylcyclotetrasiloxane is also very limited in the open literature26 27 . Recently, preparation of various amine terminated (dimethyl-tri-fluoropropyl,methyl)siloxane oligomers with varying molecular weights and backbone compositions has been reported 69115 ll7). Table 11 shows various properties of the oligomers produced as a function of composition. These types of modification play very important roles in determining the solubility characteristics and hence the compatibility of resultant polysiloxanes with other conventional organic monomers... [Pg.26]

Amine-terminated siloxane oligomers have also been utilized in the synthesis of various siloxane-amide and siloxane-imide copolymers, High molecular weight siloxane-amide copolymers have been synthesized by the solution or interfacial co-polymerization of siloxane oligomers with sebacoyl chloride or terephthaloyl chloride respectively 1S5,165). In some reactions diamine chain extenders have also been utilized. Thermal and dynamic mechanical characterization of these copolymers have shown the formation of multiphase systems160). Compression molded films displayed very good elastomeric properties. [Pg.33]

Recently siloxane-imide copolymers have received specific attention due to various unique properties displayed by these materials which include fracture toughness, enhanced adhesion, improved dielectric properties, increased solubility, and excellent atomic oxygen resistance 1S3). The first report on the synthesis of poly(siloxane-imides) appeared in 1966, where PMDA (pyromellitic dianhydride) was reacted with an amine-terminated siloxane dimer and subsequently imidized 166>. Two years later, Greber 167) reported the synthesis of a series of poly(siloxane-imide) and poly(siloxane-ester-imide) copolymers using different siloxane backbones. However no physical characterization data were reported. [Pg.33]

More recently, St. Clair and co-workers176) reported the use of aromatic amine terminated polydimethylsiloxane oligomers of varying molecular weights in an effort to optimize the properties of LARC-13 polyimides. They observed the formation of two phase morphologies with low (—119 to —113 °C) and high (293 to 318 °C) temperature Tg s due to siloxane and polyimide phases respectively. The copolymers were reported to have improved adhesive strengths and better thermal stabilities due to the incorporation of siloxanes. [Pg.33]

ABA type poly(hydroxyethyl methacrylate) (HEMA) and PDMS copolymers were synthesized by the coupling reactions of preformed a,co-isocyanate terminated PDMS oligomers and amine-terminated HEMA macromonomers312). Polymerization reactions were conducted in DMF solution at 0 °C. Products were purified by precipitation in diethyl ether to remove unreacted PDMS oligomers. After dissolving in DMF/toluene mixture, copolymers were reprecipitated in methanol/water mixture to remove unreacted HEMA oligomers. Microphase separated structures were observed under transmission electron microscope, using osmium tetroxide stained thin copolymer films. [Pg.45]

Synthesis and characterization of ABA type copolymers containing polydimethyl-siloxane or poly(trifluoropropyl,methyl)siloxane middle blocks and aromatic ester based liquid crystalline end blocks were reported 252,253). These materials were synthesized in solution by the reaction of primary or secondary amine-terminated, di-... [Pg.45]

Triple bonds can also be selectively reduced to double bonds with DIBAL-H, " with activated zinc (see 12-36), with hydrogen and Bi2B-borohydride exchange resin, ° or (internal triple bonds only) with alkali metals (Na, Li) in liquid ammonia or a low-molecular-weight amine.Terminal alkynes are not reduced by the Na—NH3 procedure because they are converted to acetylide ions under these conditions. However, terminal triple bonds can be reduced to double bonds by the... [Pg.1007]

The Emser Industries process has no ester linkage, the bonds between the two segments being amides. An amine-terminated soft bis(3-aminopropyl)polyoxytetramethylene glycol is reacted with a dimer acid (Empol 1010) and caprolactum to form polyetheramide (PETA). [Pg.110]

Notice that this dipeptide is also an amino acid because the molecule retains an amine group at one end and a carboxyl group at the other end. Consequently, an additional amino acid can add to either end of a dipeptide to form a new peptide that also has an amine terminal group at one end and a carboxyl terminal group at its other end. Figure 13-34 shows the peptide that results from addition of another alanine molecule at the amine end and a cysteine molecule at the carboxyl end of the Ala-Gly dipeptide. [Pg.945]

An amine-terminated polyoxyalkylene having an average molecular weight from about 600 to about 10,000 can be acylated with a succinic acylating agent (e.g., hexadecenyl succinic anhydride or a Diels-Alder diacid) obtained from an unsaturated fatty acid [628,629] similarly, alkyl-aryl sulfonate salts [1319] can be used in lubrication. [Pg.14]

S. V. (2007) Pd on amine-terminated ferrite nanopartides a complete magnetically recoverable facile catalyst for hydrogenation reactions. Organic Letters, 9 (7), 1419-1421. [Pg.87]


See other pages where Amine-terminated is mentioned: [Pg.191]    [Pg.361]    [Pg.351]    [Pg.339]    [Pg.25]    [Pg.32]    [Pg.263]    [Pg.162]    [Pg.397]    [Pg.763]    [Pg.76]    [Pg.678]    [Pg.537]    [Pg.212]    [Pg.310]    [Pg.576]    [Pg.32]    [Pg.30]    [Pg.61]    [Pg.135]    [Pg.142]    [Pg.789]    [Pg.665]    [Pg.666]    [Pg.185]    [Pg.186]    [Pg.90]    [Pg.39]   


SEARCH



Amine terminated nylons

Amine termination

Amine termination

Amine-terminated butadiene nitrile

Amine-terminated dendrimers

Amine-terminated derivative

Amine-terminated diaminobutane

Amine-terminated oxide)

Amine-terminated polybutadiene

Amine-terminated polyethers

Amine-terminated polypropylene imine)

Amine-terminated polypropylene imine) dendrimers

Amine-terminated polystyrene

Amines termination reactions

Atomic amine terminated polyether

Chain termination amines

Epoxy, amine terminated

Oligomers, amine terminated

PAMAM dendrimer amine terminated

PAMAM dendrimers amine terminated

Polymers amine terminated

Polyols amine-terminated

Terminal amine

Terminal amine

© 2024 chempedia.info