Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formaldehyde bromide

Very stable when dry, slightly hygroscopic deactivation, discoloration and corrosion occur to a limited extent when solutions of Bronopol are in contact with iron and aluminium decomposition in alkaline media decomposition products formaldehyde, bromide, nitrite and nitro-alkylols (Fig. 22). [Pg.70]

Bronidox is chemically the formal of 2-bromo-2-nitro-propane-l,3-diol (Bronopol) and therefore more stable than Bronopol. Figure 23 demonstrates that formaldehyde is released from Bronidox in a small amount only and very slowly even at pH 9. However, finally the degradation pathway follows the Bronopol pathway leading to formaldehyde, bromide, nitro-alcohols and nitrite. [Pg.77]

Another method for the hydrogenoiysis of aryl bromides and iodides is to use MeONa[696], The removal of chlorine and bromine from benzene rings is possible with MeOH under basic conditions by use of dippp as a ligand[697]. The reduction is explained by the formation of the phenylpalladium methoxide 812, which undergoes elimination of /i-hydrogen to form benzene, and MeOH is oxidized to formaldehyde. Based on this mechanistic consideration, reaction of alcohols with aryl halides has another application. For example, cyclohex-anol (813) is oxidized smoothly to cyclohexanone with bromobenzene under basic conditions[698]. [Pg.249]

Butynediol. Butynediol, 2-butyne-l,4-diol, [110-65-6] was first synthesized in 1906 by reaction of acetylene bis(magnesium bromide) with paraformaldehyde (43). It is available commercially as a crystalline soHd or a 35% aqueous solution manufactured by ethynylation of formaldehyde. Physical properties are Hsted in Table 2. [Pg.105]

Hydrogen bromide adds to acetylene to form vinyl bromide or ethyHdene bromide, depending on stoichiometry. The acid cleaves acycHc and cycHc ethers. It adds to the cyclopropane group by ring-opening. Additions to quinones afford bromohydroquinones. Hydrobromic acid and aldehydes can be used to introduce bromoalkyl groups into various molecules. For example, reaction with formaldehyde and an alcohol produces a bromomethyl ether. Bromomethylation of aromatic nuclei can be carried out with formaldehyde and hydrobromic acid (6). [Pg.291]

In the presence of sodium bicarbonate, sodium formaldehyde sulfoxylate (Rongalite) converts perfluoroalkyl iodides and bromides to the corresponding carboxylates Less decarboxylation to the monohydroperfluoroalkanes occurs when the bromides are used [16] (equation 17)... [Pg.427]

An important side reaction is the formation of diaryl methane derivatives ArCHaAr. Moreover poly substituted products may be obtained as minor products. Aromatic compounds have been treated with formaldehyde and hydrogen bromide or hydrogen iodide instead of hydrogen chloride. The formaldehyde may be replaced by another aldehyde the term Blanc reaction however stands for the chloromethylation only. [Pg.47]

In much the same vein, the Mannich product from acetophenone with formaldehyde and pyrrolidine (44b) affords procyclidine (49) Dn reaction with cyclohexylmagnesium bromide. In an interesting variation, the ketone is first reacted with phenylmagnesium bromide. Catalytic hydrogenation of the carbinol (50) thus obtained iTin be stopped after the reduction of only one aromatic ring. ... [Pg.47]

Condensation of the substituted phenethyl bromide, 18, with piperazine can be stopped at the monosubstituted amine (19). Reaction of this amine with propiophenone and formaldehyde in a Mannich reaction affords eprazinone (20) an antitussive agent. [Pg.64]

The initial series of major tranquilizers consists of alkylated derivatives of 4-aryl-4-hydroxypiperidines. Construction of this ring system is accomplished by a set of rather unusual reactions. Condensation of methylstyrenes with formaldehyde and ammonium chloride afford the corresponding hexahydro-1,3-oxazines (119). Heating these oxazines in the presence of acid leads to rearrangement with loss of water to the tetrahydropyridines. Scheme 1 shows a possible reaction pathway for these transformations. Addition of hydrogen bromide affords the expected 4-bromo compound (121). This last is easily displaced by water to lead to the desired alcohol (122) The side chain (123) is obtained by Friedel-Crafts acylation of p-fluorobenzene with 4-chloro-butyryl chloride. Alkylation of the appropriate arylpiperidinol with 123 affords the desired butyrophenone derivative. Thus,... [Pg.306]

DMSO or other sulfoxides react with trimethylchlorosilanes (TCS) 14 or trimefhylsilyl bromide 16, via 789, to give the Sila-Pummerer product 1275. Rearrangement of 789 and further reaction with TCS 14 affords, with elimination of HMDSO 7 and via 1276 and 1277, methanesulfenyl chloride 1278, which is also accessible by chlorination of dimethyldisulfide, by treatment of DMSO with Me2SiCl2 48, with formation of silicon oil 56, or by reaction of DMSO with oxalyl chloride, whereupon CO and CO2 is evolved (cf also Section 8.2.2). On heating equimolar amounts of primary or secondary alcohols with DMSO and TCS 14 in benzene, formaldehyde acetals are formed in 76-96% yield [67]. Thus reaction of -butanol with DMSO and TCS 14 gives, via intermediate 1275 and the mixed acetal 1279, formaldehyde di-n-butyl acetal 1280 in 81% yield and methyl mercaptan (Scheme 8.26). Most importantly, use of DMSO-Dg furnishes acetals in which the 0,0 -methylene group is deuter-ated. Benzyl alcohol, however, affords, under these reaction conditions, 93% diben-zyl ether 1817 and no acetal [67]. [Pg.201]

Strain IMB-1 is able to grow at the expense of methyl bromide (Woodall et al. 2001) and belongs to a group of organisms that can also degrade methyl iodide, but are unable to use formaldehyde or methanol (Schaefer and Oremland 1999). It was postnlated that the pathway for chloromethane degradation in this strain was similar to that in Methylobacterium chloromethanicum (McAnulla et al. 2001a). [Pg.357]

Lord and Pawliszyn" developed a related technique called in-tube SPME in which analytes partition into a polymer coated on the inside of a fused-silica capillary. In automated SPME/HPLC the sample is injected directly into the SPME tube and the analyte is selectively eluted with either the mobile phase or a desorption solution of choice. A mixture of six phenylurea pesticides and eight carbamate pesticides was analyzed using this technique. Lee etal. utilized a novel technique of diazomethane gas-phase methylation post-SPE for the determination of acidic herbicides in water, and Nilsson et al. used SPME post-derivatization to extract benzyl ester herbicides. The successful analysis of volatile analytes indicates a potential for the analysis of fumigant pesticides such as formaldehyde, methyl bromide and phosphine. [Pg.732]

Cyanide and thiocyanate anions in aqueous solution can be determined as cyanogen bromide after reaction with bromine [686]. The thiocyanate anion can be quantitatively determined in the presence of cyanide by adding an excess of formaldehyde solution to the sample, which converts the cyanide ion to the unreactive cyanohydrin. The detection limits for the cyanide and thiocyanate anions were less than 0.01 ppm with an electron-capture detector. Iodine in acid solution reacts with acetone to form monoiodoacetone, which can be detected at high sensitivity with an electron-capture detector [687]. The reaction is specific for iodine, iodide being determined after oxidation with iodate. The nitrate anion can be determined in aqueous solution after conversion to nitrobenzene by reaction with benzene in the presence of sulfuric acid [688,689]. The detection limit for the nitrate anion was less than 0.1 ppm. The nitrite anion can be determined after oxidation to nitrate with potassium permanganate. Nitrite can be determined directly by alkylation with an alkaline solution of pentafluorobenzyl bromide [690]. The yield of derivative was about 80t.with a detection limit of 0.46 ng in 0.1 ml of aqueous sample. Pentafluorobenzyl p-toluenesulfonate has been used to derivatize carboxylate and phenolate anions and to simultaneously derivatize bromide, iodide, cyanide, thiocyanate, nitrite, nitrate and sulfide in a two-phase system using tetrapentylammonium cWoride as a phase transfer catalyst [691]. Detection limits wer Hi the ppm range. [Pg.959]

Iminium ions, generated in aqueous solution from secondary amines and formaldehyde, undergo a Barbier-type allylation mediated by tin, aluminum, and zinc. The reaction is catalyzed by copper and produces tertiary homoallylamines in up to 85% yield.67 The imines generated in situ from 2-pyridinecarboxaldehyde/2-quinolinecarboxaldehyde and aryl amines undergo indium-mediated Barbier allylation in aqueous media to provide homoallylic amines.68 Crotyl and cinnamyl bromides... [Pg.353]

COMPOUND NAME CHLORODIFLUOROMETHANE DICHLOROFLUOROMETHANE CHLOROFORM HYDROGEN CYANIDE DIBROMOMETHANE DICHLOROMETHANE FORMALDEHYDE FORMIC ACID METHYL BROMIDE METHYL CHLORIDE METHYL FLUORIDE METHYL IODIDE NITROMETHANE METHANE METHANOL METHYL MERCAPTAN METHYL AMINE METHYL HYDRAZINE METHYL SILANE... [Pg.940]

Inclusion of an acetylenic linkage as part of the side chain is apparently consistent with antidepressant activity. Reaction of propargyl magnesium bromide with dibenzocycloheptadieneone leads to carbinol 82. A Mannich reaction with formaldehyde and dimethylamine leads to 83 which, upon dehydration... [Pg.223]


See other pages where Formaldehyde bromide is mentioned: [Pg.598]    [Pg.598]    [Pg.633]    [Pg.670]    [Pg.557]    [Pg.582]    [Pg.650]    [Pg.73]    [Pg.616]    [Pg.598]    [Pg.598]    [Pg.633]    [Pg.670]    [Pg.557]    [Pg.582]    [Pg.650]    [Pg.73]    [Pg.616]    [Pg.211]    [Pg.595]    [Pg.148]    [Pg.61]    [Pg.86]    [Pg.275]    [Pg.680]    [Pg.747]    [Pg.595]    [Pg.136]    [Pg.86]    [Pg.109]    [Pg.614]    [Pg.137]    [Pg.593]    [Pg.144]    [Pg.2389]    [Pg.148]    [Pg.242]    [Pg.51]    [Pg.910]    [Pg.136]   
See also in sourсe #XX -- [ Pg.179 ]

See also in sourсe #XX -- [ Pg.179 ]




SEARCH



Sodium formaldehyde sulfoxy bromides to perfluorocarb

© 2024 chempedia.info