Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenol anion

Another synthesis of a bridged hydrocarbon takes advantage of high elearon release from the /wra-position of phenolate anions, which may be used to transform the phenol moiety into a substituted cross-conjugated cyciohexadienone system (S. Masamune, 1961, 1964). [Pg.93]

Alkaline Catalysts, Resoles. Resole-type phenoHc resins are produced with a molar ratio of formaldehyde to phenol of 1.2 1 to 3.0 1. For substituted phenols, the ratio is usually 1.2 1 to 1.8 1. Common alkaline catalysts are NaOH, Ca(OH)2, and Ba(OH)2. Whereas novolak resins and strong acid catalysis result in a limited number of stmctures and properties, resoles cover a much wider spectmm. Resoles may be soHds or Hquids, water-soluble or -insoluble, alkaline or neutral, slowly curing or highly reactive. In the first step, the phenolate anion is formed by delocali2ation of the negative charge to the ortho and para positions. [Pg.295]

Alkylphenols undergo a carboxylation reaction known as the Kolbe Schmidt reaction. In the following example, the phenolate anion of /)-nonylphenol (15) reacts with carbon dioxide under pressure. Neutralization generates a sahcyhc acid (16) (10). [Pg.60]

Generally, phenols (as the phenolate anion) couple more readily than amines, and members of the naphthalene series more readily than the members of the benzene series. [Pg.428]

A comparison of phenol acidity in DMSO versus the gas phase also shows an attenuation of substituent effects, but not nearly as much as in water. Whereas the effect of ubstituents on AG for deprotonation in aqueous solution is about one-sixth that in the gas phase, the ratio for DMSO is about one-third. This result points to hydrogen bonding of the phenolate anion by water as the major difference in the solvating properties of water and DMSO. ... [Pg.244]

When the leaving group is better, breakdown can occur directly from A. This is the case when R"0 is a phenolate anion. The mechanism also depends upon the pH and the presence of general acids and bases because the position of the equilibria among the tetrahedral intermediates and their rates of breakdown are determined by these factors. [Pg.480]

Molecular iodine is not a very powerful halogenating agent. Only very reactive aromatics such as anilines or phenolate anions are reactive toward iodine. Iodine monochloride can be used as an iodinating agent. The greater electronegativity of the... [Pg.578]

Organic acids convert the blue mesomerically stabilized phenolate anion to the red undissociated acid. Reductones (e.g. ascorbic acid) reduce the reagent to a colorless salt. [Pg.256]

The hydroxylation of a phenol 1 upon treatment with a peroxodisulfate in alkaline solution, to yield a 1,2- or 1,4-dihydroxybenzene 3, is called the Elbs reaction The phenol is deprotonated by base to give a phenolate anion 4, that is stabilized by resonance, and which is activated at the ortho or the para position towards reaction with an electrophilic agent ... [Pg.102]

It is generally believed that the absorption (and fluorescence excitation) peak at about 400 nm is caused by the neutral form of the chro-mophore, 5-(p-hydroxybenzylidene)imidazolin-4-one, and the one in the 450-500 nm region by the phenol anion of the chromophore that can resonate with the quinoid form, as shown below (R1 and R2 represent peptide chains). However, the emission of light takes place always from the excited anionic form, even if the excitation is done with the neutral form chromophore. This must be due to the protein environment that facilitates the ionization of the phenol group of the chromophore. This is also consistent with the fact that the pACa values of phenols in excited state are in an acidic range, between 3 and 5 (Becker, 1969), thus favoring anionic forms at neutral pH. [Pg.153]

Imai, Y., et al. (2001). Fluorescence properties of phenolate anions of coe-lenteramide analogues the light-emitter structure in aequorin bioluminescence. J. Photocbem. Photobiol., A Chemistry 146 95-107. [Pg.405]

A proposed mechanism for silyl ether displacement is shown in Scheme 6.14. In the first step, the fluoride anion converts the trimethyl siloxy group into a phe-nolate salt. In the following step, the phenolate anion attacks the activated fluoro monomer to generate an ether bond. The amount of catalyst required is about 0.1-0.3 mol%. Catalyst type and concentration are crucial for this reaction. [Pg.340]

Dichloro monomers can also be polymerized with bisphenols in the presence of fluorides as promoting agents.78 The fluoride ions promote the displacement of the chloride sites to form more reactive fluoride sites, which react with phenolate anion to form high-molecular-weight polymers. Adding 5-10 mol % phase transfer catalysts such as A-alkyl-4-(dialkylamino)pyridium chlorides significantly increased the nucleophilicity and solubility of phenoxide anion and thus shortened the reaction time to one fifth of the uncatalyzed reaction to achieve the same molecular weight.79... [Pg.341]

There was a linear relationship between the rate constant and the [NaOH]-[phenol] ratio (pH between 5.5 and 9.25). It was suggested that a limiting pH of approximately 9 exists, above which an increase in pH does not enhance the rate of reaction due to saturation of phenolate anions. Considerable Canizarro side reactions occurred on formaldehyde at pH > 10.55,60... [Pg.405]

Side reactions involving branching through a secondary hydroxyl group can also occur. The extent of these side reactions should decrease as the ratio of epoxy to phenol decreases since phenolate anions are significantly more nucleophilic titan aliphatic hydroxyl groups. [Pg.412]

Bromomethyl-3-methylquinoxaline (273) and m-hydroxybenzoic acid (274) gave either 2-(m-hydroxybenzoyloxymethyl)-3-methylquinoxaline (275) [KOH (1 mol), EtOH, reflux, 2h 69%] or 2-(m-carboxyphenoxymethyl)-3-methylquinoxaline (276) [KOH (2 mol), EtOH, 50°C—>reflux, 1 h 44%] p-hydroxybenzoic acid reacted similarly but o-hydroxybenzoic acid (salicylic acid) gave only the isomer of product (275) even in the presence of KOH (2 mol). It would seem that the substrate (275) preferred to react at the phenolic anion rather than at the carboxylate anion when both were present... [Pg.182]

The reaction course has not been elucidated (cf. also sodium hydroxide reagent). Hydrolyzation reactions and aromatizations are probably primarily responsible for the formation of colored and fluorescent derivatives. Substituted nitrophenols - e.g. the thiophosphate insecticides — can probably be hydrolyzed to yellow-colored nitro-phenolate anions by sodium hydroxide or possibly react to yield yellow Meisenheimer complexes. Naphthol derivatives with a tendency to form radicals, e.g. 2-naphthyl benzoate, react with hydrolysis to yield violet-colored mesomerically stabilized 1,2-naph-thalenediol radicals. [Pg.191]

In hemoglobin M, histidine F8 (His F8) has been replaced by tyrosine. The iron of HbM forms a tight ionic complex with the phenolate anion of tyrosine that stabilizes the Fc3 form. In a-chain hemoglobin M variants, the R-T equilibrium favors the T state. Oxygen affinity is reduced, and the Bohr effect is absent. P Ghain hemoglobin M variants exhibit R-T switching, and the Bohr effect is therefore present. [Pg.46]

Cyanide and thiocyanate anions in aqueous solution can be determined as cyanogen bromide after reaction with bromine [686]. The thiocyanate anion can be quantitatively determined in the presence of cyanide by adding an excess of formaldehyde solution to the sample, which converts the cyanide ion to the unreactive cyanohydrin. The detection limits for the cyanide and thiocyanate anions were less than 0.01 ppm with an electron-capture detector. Iodine in acid solution reacts with acetone to form monoiodoacetone, which can be detected at high sensitivity with an electron-capture detector [687]. The reaction is specific for iodine, iodide being determined after oxidation with iodate. The nitrate anion can be determined in aqueous solution after conversion to nitrobenzene by reaction with benzene in the presence of sulfuric acid [688,689]. The detection limit for the nitrate anion was less than 0.1 ppm. The nitrite anion can be determined after oxidation to nitrate with potassium permanganate. Nitrite can be determined directly by alkylation with an alkaline solution of pentafluorobenzyl bromide [690]. The yield of derivative was about 80t.with a detection limit of 0.46 ng in 0.1 ml of aqueous sample. Pentafluorobenzyl p-toluenesulfonate has been used to derivatize carboxylate and phenolate anions and to simultaneously derivatize bromide, iodide, cyanide, thiocyanate, nitrite, nitrate and sulfide in a two-phase system using tetrapentylammonium cWoride as a phase transfer catalyst [691]. Detection limits wer Hi the ppm range. [Pg.959]

Remarkable substituent effects on the absorption bands in the colored form are observed on substitution in positions 3, 6, and 8 of the spiroben-zopyran (Table 1). A nitro group at the 8-position yields a higher Xmax ( 40nm) compared with a nitro group at the 6-position due to interaction of phenolate anion and oxygen atom of the nitro group. In many cases, it... [Pg.10]

Mg/Me (Me=Al, Fe) mixed oxides prepared from hydrotalcite precursors were compared in the gas-phase m-cresol methylation in order to find out a relationship between catalytic activity and physico-chemical properties. It was found that the regio-selectivity in the methylation is considerably affected by the surface acid-basic properties of the catalysts. The co-existence of Lewis acid sites and basic sites leads to an enhancement of the selectivity to the product of ortho-C-alkylation with respect to the sole presence of basic sites. This derives from the combination of two effects, (i) The H+-abstraction properties of the basic site lead to the generation of the phenolate anion, (ii) The coordinative properties of Lewis acid sites, through their interaction with the aromatic ring, make the mesomeric effect less efficient, with predominance of the inductive effect of the -O species in directing the regio-selectivity of the C-methylation into the ortho position. [Pg.347]

Figure 1. Hydrolysis pH-rate profiles of phenyl acetate (lower) and a substituted 2-phenyl-l,3-dioxane (HND). Phenyl acetate profile constructed from data of Mabey and Mill (32), HND profile from data of Bender and Silver (33). Phenyl acetate reacts via specific-acid catalyzed, neutral, and base-catalyzed transformation pathways. The pseudo-first-order rate constant is given by Kobs = K(h+) [H+] + Kn + K(qh-) [0H—]. HND hydrolyzes only via an acid-catalyzed pathway the phenolate anion is some 867 times more reactive than its conjugate acid. Figure 1. Hydrolysis pH-rate profiles of phenyl acetate (lower) and a substituted 2-phenyl-l,3-dioxane (HND). Phenyl acetate profile constructed from data of Mabey and Mill (32), HND profile from data of Bender and Silver (33). Phenyl acetate reacts via specific-acid catalyzed, neutral, and base-catalyzed transformation pathways. The pseudo-first-order rate constant is given by Kobs = K(h+) [H+] + Kn + K(qh-) [0H—]. HND hydrolyzes only via an acid-catalyzed pathway the phenolate anion is some 867 times more reactive than its conjugate acid.

See other pages where Phenol anion is mentioned: [Pg.331]    [Pg.427]    [Pg.244]    [Pg.455]    [Pg.507]    [Pg.251]    [Pg.171]    [Pg.172]    [Pg.235]    [Pg.372]    [Pg.387]    [Pg.412]    [Pg.32]    [Pg.273]    [Pg.288]    [Pg.1266]    [Pg.116]    [Pg.178]    [Pg.205]    [Pg.334]    [Pg.359]    [Pg.417]    [Pg.57]    [Pg.59]    [Pg.149]   


SEARCH



Anodic Homocoupling of Anions, at-Complexes, Organometallics and Phenolates

C-Alkylation of Phenolate Anions

Phenol anion, resonance structures

Phenolate anion

Phenolate anion

The protonation of anthracene anion radical by phenol

© 2024 chempedia.info