Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Folic acid bacterial synthesis

Sulfa drugs inhibit bacterial folic acid synthesis... [Pg.322]

Given this structural similarity, it should not be surprising to learn that sulfanilamide competes with p-aminobenzoic acid for a binding site on the surface of dihydropteroate synthetase. Put another way, sulfanilamide binds to the enzyme where p-aminobenzoic acid should bind but no reaction occurs. The consequence is that a step in folic acid biosynthesis is disrupted and the bacterial cell is deprived of adequate folic acid. Nucleic acid synthesis, among other things, is disrupted, leading to a cessation of cell growth and division. The human immune system can mop up what remains. No similar consequences befall the human host since it cannot make folic acid in the first place and must get an adequate supply of this vitamin in the diet. [Pg.322]

Sulfa drugs were the first important antibacterials. Sulfa drugs act by inhibiting bacterial folic acid synthesis. [Pg.329]

The first synthetic antibiotics were the sulfonamides (right). As analogues of p-ami-nobenzoic acid, these affect the synthesis of folic acid, an essential precursor of the coenzyme THF (see p. 108). Transport antibiotics (top center) have the properties of ion channels (see p. 222). When they are deposited in the plasma membrane, it leads to a loss of ions that damages the bacterial cells. [Pg.254]

Thus sulfonamides are bacteriostatic drugs that inhibit bacterial growth by interfering with the microbial synthesis of folic acid. More specifically, sulfonamides block the biosynthetic pathway of folic acid synthesis, thus competitively inhibiting the transformation of p-aminobenzoic acid to folic acid (mediated by the enzyme dihydropteroate synthetase), which allows them to be considered as antimetabolites. [Pg.500]

Pharmacology Aminosalicylic acid is bacteriostatic against Mycobacterium tuberculosis. It inhibits the onset of bacterial resistance to streptomycin and isoniazid. The mechanism of action has been postulated to be inhibition of folic acid synthesis (but without potentiation with antifolic compounds) or inhibition of synthesis of the cell wall component, mycobactin, thus reducing iron uptake by M. tuberculosis. [Pg.1722]

Both the sulfonamides and trimethoprim interfere with bacterial folate metabolism. For purine synthesis tetrahydrofolate is required. It is also a cofactor for the methylation of various amino acids. The formation of dihydrofolate from para-aminobenzoic acid (PABA) is catalyzed by dihydropteroate synthetase. Dihydrofolate is further reduced to tetrahydrofolate by dihydrofolate reductase. Micro organisms require extracellular PABA to form folic acid. Sulfonamides are analogues of PABA. They can enter into the synthesis of folic acid and take the place of PABA. They then competitively inhibit dihydrofolate synthetase resulting in an accumulation of PABA and deficient tetrahydrofolate formation. On the other hand trimethoprim inhibits dihydrofolate... [Pg.413]

B. Humans cannot synthesize folic acid (A) diet is their main source. Sulfonamides selectively inhibit microbially synthesized folic acid. Incorporation (B) of PABA into microbial folic acid is competitively inhibited by sulfonamides. The TMP-SMX combination is synergistic because it acts at different steps in microbial folic acid synthesis. All sulfonamides are bacteriostatic. Inhibition of the transpeptidation reaction (C) involved in the synthesis of the bacterial cell wall is the basic mechanism of action of (3-lac-tam antibiotics Changes in DNA gyrases (D) and active efflux transport system are mechanisms for resistance to quinolones. Structural changes (E) in dihydropteroate synthetase and overproduction of PABA are mechanisms of resistance to the sulfonamides. [Pg.524]

B. Overproduction (A) of PABA is one of the resistance mechanisms of sulfonamides. Changes in the synthesis of DNA gyrases (B) is a well-described mechanism for quinolone resistance. Plasmid-mediated resistance (C) does not occur with quinolones. An active efflux system for transport of drug out of the cell has been described for quinolone resistance, but it is not plasmid mediated. Inhibition of structural blocks (D) in bacterial cell wall synthesis is a basic mechanism of action of p-lactam antibiotics. Inhibition of folic acid synthesis (E) by blocking different steps is the basic mechanism of action of sulfonamides. [Pg.524]

Mecfianism of Action An antibiotic that is a competitive antagonist of para-ami-nobenzoicacid (PABA) it prevents normal bacterial utilization of PABA for synthesis of folic acid. Therapeutic Effect Inhibits bacterial growth. [Pg.325]

Mectianism of Action Interferes with synthesis of folic acid that bacteria require for growth by inhibition of para-aminobenzoic acid metabolism. Therapeutic Effect Prevents further bacterial growth. [Pg.1156]

Sulfonamides are structural analogs of PABA that competitively inhibit bacterial synthesis of folic acid (see p. 371). Because purine synthesis requires THF as a coenzyme, the sulfa drugs slow down this pathway in bacteria. [Pg.292]

Sulfa drugs have a close structural resemblance to PABA. When taken by a person suffering from a bacterial infection, a sulfa drug is transformed by the body to the compound sulfanilamide, which attaches to the bacterial receptor sites designed for PABA, as shown in Figure 14.7, thereby preventing the synthesis of folic acid. Without folic acid, the bacteria soon die. The patient, however, because he or she receives folic acid from the diet, lives on. [Pg.485]

The mode of action of the sulfonamides as antagonists of 4-aminobenzoic acid (PAB) is well documented, as is the effect of physicochemical properties of the sulfonamide molecule, e.g. pK, on potency (B-81MI10802). Sulfonamides compete with PAB in the biosynthesis of folic acid (44), a vital precursor for several coenzymes found in all living cells. Mammalian cells cannot synthesize folic acid (44), and rely on its uptake as an essential vitamin. However, bacteria depend on its synthesis from pteridine precursors, hence the selective toxicity of sulfonamides for bacterial cells. Sulfonamides may compete with PAB at an enzyme site during the assembly of folic acid (44) or they may deplete the pteridine supply of the cell by forming covalently-bonded species such as (45) or they may replace PAB as an enzyme substrate to generate coupled products such as (46) which are useless to the cell. [Pg.209]

Factors which cause a decrease in bioavailability include 111 high urinary excretion (2) destruction by certain mlesiinal bacteria (2) increased urinary excretion caused by vitamin C (4) presence of sulfonamides which block intestinal synthesis and (5) a decrease in absorption mechanisms. Increase in bioavailability can be provided by stimulating intestinal bacterial synthesis in certain species. No toxicity due to folic acid has been reported in humans. [Pg.669]

Another group of inhibitors prevents nucleotide biosynthesis indirectly by depleting the level of intracellular tetrahydrofolate derivatives. Sulfonamides are structural analogs of p-aminobenzoic acid (fig. 23.19), and they competitively inhibit the bacterial biosynthesis of folic acid at a step in which p-aminobenzoic acid is incorporated into folic acid. Sulfonamides are widely used in medicine because they inhibit growth of many bacteria. When cultures of susceptible bacteria are treated with sulfonamides, they accumulate 4-carboxamide-5-aminoimidazole in the medium, because of a lack of 10-formyltetrahydrofolate for the penultimate step in the pathway to IMP (see fig. 23.10). Methotrexate, and a number of related compounds inhibit the reduction of dihydrofolate to tetrahydrofolate, a reaction catalyzed by dihydrofolate reductase. These inhibitors are structural analogs of folic acid (see fig. 23.19) and bind at the catalytic site of dihydrofolate reductase, an enzyme catalyzing one of the steps in the cycle of reactions involved in thymidylate synthesis (see fig. 23.16). These inhibitors therefore prevent synthesis of thymidylate in replicating... [Pg.551]

Several antibacterial drugs inhibit bacterial nucleic acid synthesis by inhibiting the production of folic acid.17 Folic acid serves as an enzymatic cofactor in a number of reactions, including synthesis of bacterial nucleic acids and certain essential amino acids. The pathway for synthesis of these folic acid cofactors is illustrated in Figure 33-2. Certain antibacterial drugs block specific steps in the folate pathway, thus impairing the production of this enzymatic cofactor and ultimately impairing the production of nucleic acids and... [Pg.503]

Dapsone (Avlosulfon) is a member of a class of chemical agents known as the sulfones. Dapsone is especially effective against M. leprae and is used with rifampin as the primary method of treating leprosy. Dapsone appears to exert its antibacterial effects in a manner similar to that of the sulfonamide drugs that is, dapsone impairs folic acid synthesis by competing with PABA in bacterial cells. Primary adverse effects associated with dapsone include peripheral motor weakness, hypersensitivity reactions (skin rashes, itching), fever, and blood dyscrasias, such as hemolytic anemia. [Pg.511]

The sulfonamides include sulfadiazine, sulfamethizole, and similar agents (see Table 33-4). Sulfonamides interfere with bacterial nucleic acid production by disrupting folic acid synthesis in susceptible bacteria. Sulfonamide drugs are structurally similar to PABA, which is the substance used in the first step of folic acid synthesis in certain types of bacteria (see Fig. 33-2). Sulfonamides either directly inhibit the enzyme responsible for PABA utilization or become a substitute for PABA, which results in the abnormal synthesis of folic acid. In either case, folic acid synthesis is reduced, and bacterial nucleic acid synthesis is impaired. [Pg.512]

Mechanism of Action. Pyrimethamine blocks the production of folic acid in susceptible protozoa by inhibiting the function of the dihydrofolate reductase enzyme. Folic acid helps catalyze the production of nucleic and amino acids in these parasites. Therefore, this drug ultimately impairs nucleic acid and protein synthesis by interfering with folic acid production. The action of sulfadoxine and other sulfonamide antibacterial agents was discussed in Chapter 33. These agents also inhibit folic acid synthesis in certain bacterial and protozoal cells. [Pg.554]

Mammalian cells (and some bacteria) lack the enzymes required for folate synthesis and depend upon exogenous sources of folate therefore, they are not susceptible to sulfonamides. Sulfonamide resistance may occur as a result of mutations that cause overproduction of PABA, cause production of a folic acid-synthesizing enzyme that has low affinity for sulfonamides, or cause a loss of permeability to the sulfonamide. Dihydropteroate synthase with low sulfonamide affinity is often encoded on a plasmid that is transmissible and can disseminate rapidly and widely. Sulfonamide-resistant cells may be present in susceptible bacterial populations and can emerge under selective pressure. [Pg.1077]

A metabolic pathway that has received considerable attention is the conversion of 2 -deoxyuridine 5 -monophosphate (dUMP, 6.60) to thymidine 5 -monophosphate (TMP, 6.61) (Scheme 6.13). Without an adequate supply of TMP, a cell or bacterium cannot create DNA for cell division. Therefore, blocking TMP synthesis is an attractive method for slowing the advancement of certain cancers and bacterial infections. Important molecules in the methylation of dUMP are the various folic acid derivatives folic acid (FA, 6.62), dihydrofolic acid (DHF, 6.63), tetrahydrofolic acid (THF, 6.64), and N5, A1 "-methylene tetrahydrofolic acid (MTHF, 6.65) (Figure 6.23). These structures... [Pg.142]

Unfortunately, there are few pure examples of true selective toxicity. Perhaps the best is penicillin. The therapeutic specificity of this antibiotic is based upon the qualitative difference between bacterial cell wall synthesis and mammalian cell membrane synthesis. Synthesis of the former can be inhibited by penicillin while the latter is unaffected. Thus, penicillin is one of the few examples of a drug that can actually cure an illness. A similar example involves the sulfa drugs, which interfere with the synthesis of folic acid, used in nucleic acid formation, in bacteria. While bacteria must synthesize their own folic acid, mammalian cells utilize dietary, preformed folic acid and are not susceptible to interference with its formation. [Pg.17]

Tetrahydrofolic acid (THF) is a coenzyme in the synthesis of purine bases and thymidine. These are constituents of DNA and RNA and are required for cell growth and replication. Lack of THF leads to inhibition of cell proliferation. Formation of THF from dihydrofolate (DHF) is catalyzed by the enzyme dihydrofolate reductase. DHF is made from folic acid, a vitamin that cannot be synthesized in the body but must be taken up from exogenous sources. Most bacteria do not have a requirement for folate, because they are capable of synthesizing it-more precisely DHF-ffom precursors. Selective interference with bacterial biosynthesis of THF can be achieved with sulfonamides and trimethoprim. [Pg.274]

Figure 1.12. Stractures of the sulfonamide drag prontosil rubrum , its antibacterially active metabolite sulfanilamide, and the bacterial metabolite p-Aminobenzoic acid. Sulfanilamide acts as an antimetabolite (i.e., competitive inhibitor) in the synthesis of folic acid, of which aminobenzoic acid is a component... Figure 1.12. Stractures of the sulfonamide drag prontosil rubrum , its antibacterially active metabolite sulfanilamide, and the bacterial metabolite p-Aminobenzoic acid. Sulfanilamide acts as an antimetabolite (i.e., competitive inhibitor) in the synthesis of folic acid, of which aminobenzoic acid is a component...
A fourth difference between bacterial and human cells involves specific biosynthetic pathways. Bacterial cells usually synthesize their own folic acid, whereas humans receive folic acid preformed in their food. Thus drugs that can inhibit folic acid synthesis are selectively toxic for bacteria. [Pg.179]

Sulfonamides were the first group of chemotherapeutic agents used for the prevention or treatment of bacterial infections in humans. Sulfonamides (e.g., sulfisoxazole) act by inhibiting bacterial synthesis of folic acid, a chemical required for synthesis of nucleic acid and protein. These drugs competitively inhibit the first step in the synthesis of folic acid—the conversion of para-aminobenzoic acid into dihydrofolic acid. Because humans absorb preformed folic acid from food, sulfonamide inhibition has only a minimal effect on hiunan cells. [Pg.193]

Pyrimethamine and trimethoprim reversibly inhibit the second step in the synthesis of folic acid by inhibiting the enzyme dihydrofolate reductase, which catalyzes the reduction of dihydrofolic acid to tetrahydrofolic acid. The trimethoprim-binding affinity is much stronger for the bacterial enzyme than the corresponding mammalian enzyme, which produces selective toxicity. A powerful synergism exists between either pyrimethamine or trimethoprim and sulfonamides (e g., sulfemethoxazole and trimethoprim) because of sequential blockage of the same biosynthetic pathway. [Pg.193]

Sulfanilamide and p-aminobenzoic acid are similar in size and shape and have related functional groups. Thus, when sulfanilamide is administered, bacteria attempt to use it in place of p-aminobenzoic acid to synthesize folic acid. Derailing folic acid synthesis means that the bacteria cannot grow and reproduce. Sulfanilamide only affects bacterial cells, though, because humans do not synthesize folic acid, and must obtain it from their diets. [Pg.991]

A closer look at these events reveals that bacteria synthesize folic acid using several enzymes, including one called dihydropteroate synthetase, which catalyzes the attachment of p-aminobenzoic acid to a pteridine ring system. When sulfanilamide is present it competes with the p-amino-benzoic acid (note the structural similarity) for the active site on the enzyme. This activity makes it a competitive inhibitor. Once this site is occupied on the enzyme, folic acid synthesis stops and bacterial growth stops. Folic acid can also be synthesized in the laboratory. ... [Pg.382]


See other pages where Folic acid bacterial synthesis is mentioned: [Pg.176]    [Pg.248]    [Pg.65]    [Pg.386]    [Pg.9]    [Pg.585]    [Pg.56]    [Pg.962]    [Pg.344]    [Pg.85]    [Pg.293]    [Pg.164]    [Pg.1454]    [Pg.669]    [Pg.300]    [Pg.301]    [Pg.164]   
See also in sourсe #XX -- [ Pg.616 , Pg.617 ]

See also in sourсe #XX -- [ Pg.616 , Pg.617 ]




SEARCH



Bacterial synthesis

Folic

Folic acid

Folic acid synthesis

© 2024 chempedia.info