Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction of catalysts

Apart from the activation of a biphasic reaction by extraction of catalyst poisons as described above, an ionic liquid solvent can activate homogeneously dissolved transition metal complexes by chemical interaction. [Pg.220]

Extraction of catalyst from the tar by water before recycling. [Pg.93]

In the early 1980s, workers at Shell could demonstrate melt processability of polyketone produeed by palladium cyanide catalysts, after extensive extraction of catalyst residues from the polymers and blending these with other polymers such as styrene/acrylonitrile copolymer. From these studies, it was suggested that thermoplastic properties were possible in principle, and that the polyketone backbone was not inherently unstable in the melt as previously concluded. However, catalyst extraction did not offer a viable production option from a technical and economic viewpoint. [Pg.345]

Fig. 4.8-12). After 2-methyl-butane was used to extract the spent catalyst for 1 h, the initial activity of alkylation reaction was restored to about 70%. A similar effect was observed upon extraction with 2-methyl-propane. However, if propane was used to regenerate the deactivated catalyst, no significant improvement was obtained and the catalyst still showed low alkylate yield and high oligomer yield. These results are in good accord with those reported in Fig. 4.8-11. It is clear that catalyst deactivation is closely related to the extraction capacity of the SCF. In situ extraction of catalyst poisons determines catalyst lifetime. Furthermore, failure of the extraction of these catalyst poisons favored the oligomerization reaction of the alkene. [Pg.406]

In a PTC reaction catalyzed by quaternary onium salt involving the extraction of catalyst-anion ion pair, the kinetics is complicated by the reactive form of the reactant anion in the organic phase. From both physical and kinetic points of view, two types of ion pairs can be considered to exist, namely, the loose or solvent separated ion pairs and the tight or contact ion pairs. Since any form of the anion (free ion, catalyst-anion ion pair, or ion aggregates) could be the reactive species in the PTC reactions, it is worthwhile exploring the kinetics associated with the following two limiting cases of the reactive form of the anion. [Pg.244]

The mechanism of the reaction, which is of the aldol type, involves the car-bonyl group of tlie aldehyde and an active methylene group of the anhydride the function of the basic catalyst B (acetate ion 0H3000 or triethylamine N(0,Hb)j) is to form the anion of the active hydrogen component, i.e., by the extraction of a proton from the anhydride ... [Pg.707]

Endo-exo product mixtures were isolated using the following procedure. A solution of cyclopentadiene (concentration 2-10" M in water and 0.4 M in oiganic solvents) and the dienophile (concentration 1-5 mM) in the appropriate solvent, eventually containing a 0.01 M concentration of catalyst, was stirred at 25 C until the UV-absorption of the dienophile had disappeared. The reaction mixture (diluted with water in the case of the organic solvents) was extracted with ether. The ether layer was washed with water and dried over sodium sulfate. After the evaporation of the ether the... [Pg.67]

Then add a bit of NaHCOs (4 grams) and salt to saturate solution. Stir a bit more. Separate layers, Extract one more time and distill. Time depends on reaction speed. Reaction speed depends on the amount of catalyst and temperature. 60 C seems to be good, more catalyst, less time. More temperature May be more byproducts, this is what happen when acetic acid is the solvent. Probably a good way will be also acetic acid and 40-50 C, but dual phase is easy to extract ans uses less chemicals. [Pg.79]

Extraction of C-8 Aromatics. The Japan Gas Chemical Co. developed an extraction process for the separation of -xylene [106-42-3] from its isomers using HF—BF as an extraction solvent and isomerization catalyst (235). The highly reactive solvent imposes its own restrictions but this approach is claimed to be economically superior to mote conventional separation processes (see Xylenes and ethylbenzene). [Pg.79]

Other than fuel, the largest volume appHcation for hexane is in extraction of oil from seeds, eg, soybeans, cottonseed, safflower seed, peanuts, rapeseed, etc. Hexane has been found ideal for these appHcations because of its high solvency for oil, low boiling point, and low cost. Its narrow boiling range minimises losses, and its low benzene content minimises toxicity. These same properties also make hexane a desirable solvent and reaction medium in the manufacture of polyolefins, synthetic mbbers, and some pharmaceuticals. The solvent serves as catalyst carrier and, in some systems, assists in molecular weight regulation by precipitation of the polymer as it reaches a certain molecular size. However, most solution polymerization processes are fairly old it is likely that those processes will be replaced by more efficient nonsolvent processes in time. [Pg.406]

The production of CPO is based on relatively inexpensive cycHc substances these must be derivatized, however, to meet the requirements of resistance to heat softening and suitabiUty for metallization. Metathesis polymerization is problem-prone, since relatively large amounts of catalyst (WCl, C2H AlCl2) must be removed by solvent extraction (216). In the process, the price of CPO, at small batches, is several times higher than that of BPA-PC. [Pg.161]

Table 3 provides typical specifications for isoprene that are suitable for Al—Ti polymerization (89). Traditional purification techniques including superfractionation and extractive distillation are used to provide an isoprene that is practically free of catalyst poisons. Acetylenes and 1,3-cyclopentadiene are the most difficult to remove, and distillation can be supplemented with chemical removal or partial hydrogenation. Generally speaking distillation is the preferred approach. Purity is not the main consideration because high quaUty polymer can be produced from monomer with relatively high levels of olefins and / -pentane. On the other hand, there must be less than 1 ppm of 1,3-cyclopentadiene. [Pg.467]

Other uses include use as a reaction and extraction solvent in pharmaceutical production as an intermediate for the preparation of catalysts, antioxidants (qv), and perfumes and as a feedstock in the production of methyl isopropenyl ketone, 2,3-butanedione, and methyl ethyl ketone peroxide. Concern has also arisen at the large volume of exported MEK which has been covertly diverted and used to process cocaine in Latin American countries... [Pg.490]

Mercuric Sulfate. Mercuric s Af2iX.e.[7783-35-9] HgSO, is a colorless compound soluble ia acidic solutions, but decomposed by water to form the yellow water-iasoluble basic sulfate, HgSO 2HgO. Mercuric sulfate is prepared by reaction of a freshly prepared and washed wet filter cake of yellow mercuric oxide with sulfuric acid ia glass or glass-lined vessels. The product is used as a catalyst and with sodium chloride as an extractant of gold and silver from roasted pyrites. [Pg.114]

Others. Oxahc acid is used for the production of cobalt, as a raw material of various agrochemicals and pharmaceuticals, for the manufacture of electronic materials (76—83), for the extraction of tungsten from ore (84), for the production of metal catalysts (85,86), as a polymerization initiator (87—89), and for the manufacture of zirconium (90) and beryhium oxide (91). [Pg.462]

Either product can be favored over the other by proper selection of catalyst and reaction conditions. However, the principal source of DIPE is as a by-product from isopropyl alcohol production. Typically, excess DIPE is recycled over acidic catalysts ia the alcohol process where it is hydrated to isopropyl alcohol. DIPE is used to a minor extent ia iadustrial extraction and as a solvent. [Pg.106]

Xylose is obtained from sulfite Hquors, particularly from hardwoods, such as birch, by methanol extraction of concentrates or dried sulfite lyes, ultrafiltration (qv) and reverse osmosis (qv), ion exchange, ion exclusion, or combinations of these treatments (201). Hydrogenation of xylose is carried out in aqueous solution, usually at basic pH. The Raney nickel catalyst has a loading of 2% at 125°C and 3.5 MPa (515 psi) (202,203). [Pg.52]

Competitive Extraetion of Anions. The successful extraction of the necessary anion into the organic phase is cmcial for PTC. Often three anions compete for the catalyst cation the one that is to react, the one formed in the reaction, and the one brought in originally with the catalyst. Table 1 hsts the widely differing values of tetra-rr-butylammonium salts. The big difference in the halide series is noteworthy and preparatively important. Hydroxide is 10 times mote difficult to extract than chloride (11) and the divalent and trivalent anions and PO " are stiU more hydrophilic. Thus... [Pg.188]

Today the sulphonation route is somewhat uneconomic and largely replaced by newer routes. Processes involving chlorination, such as the Raschig process, are used on a large scale commercially. A vapour phase reaction between benzene and hydrocholoric acid is carried out in the presence of catalysts such as an aluminium hydroxide-copper salt complex. Monochlorobenzene is formed and this is hydrolysed to phenol with water in the presence of catalysts at about 450°C, at the same time regenerating the hydrochloric acid. The phenol formed is extracted with benzene, separated from the latter by fractional distillation and purified by vacuum distillation. In recent years developments in this process have reduced the amount of by-product dichlorobenzene formed and also considerably increased the output rates. [Pg.636]

Since no special ligand design is usually required to dissolve transition metal complexes in ionic liquids, the application of ionic ligands can be an extremely useful tool with which to immobilize the catalyst in the ionic medium. In applications in which the ionic catalyst layer is intensively extracted with a non-miscible solvent (i.e., under the conditions of biphasic catalysis or during product recovery by extraction) it is important to ensure that the amount of catalyst washed from the ionic liquid is extremely low. Full immobilization of the (often quite expensive) transition metal catalyst, combined with the possibility of recycling it, is usually a crucial criterion for the large-scale use of homogeneous catalysis (for more details see Section 5.3.5). [Pg.214]


See other pages where Extraction of catalysts is mentioned: [Pg.219]    [Pg.219]    [Pg.332]    [Pg.94]    [Pg.95]    [Pg.29]    [Pg.219]    [Pg.375]    [Pg.219]    [Pg.219]    [Pg.332]    [Pg.94]    [Pg.95]    [Pg.29]    [Pg.219]    [Pg.375]    [Pg.88]    [Pg.1792]    [Pg.735]    [Pg.241]    [Pg.438]    [Pg.552]    [Pg.507]    [Pg.326]    [Pg.397]    [Pg.186]    [Pg.188]    [Pg.290]    [Pg.7]    [Pg.208]    [Pg.77]    [Pg.709]    [Pg.42]    [Pg.830]    [Pg.243]    [Pg.247]   
See also in sourсe #XX -- [ Pg.229 , Pg.688 ]




SEARCH



© 2024 chempedia.info