Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Experimental techniques introduction

The flow patterns for single phase, Newtonian and non-Newtonian liquids in tanks agitated by various types of impeller have been repotted in the literature.1 3 27 38 39) The experimental techniques which have been employed include the introduction of tracer liquids, neutrally buoyant particles or hydrogen bubbles, and measurement of local velocities by means of Pitot tubes, laser-doppler anemometers, and so on. The salient features of the flow patterns encountered with propellers and disc turbines are shown in Figures 7.9 and 7.10. [Pg.294]

In the following sections the effect of pressure on different types of electron-transfer processes is discussed systematically. Some of our work in this area was reviewed as part of a special symposium devoted to the complementarity of various experimental techniques in the study of electron-transfer reactions (124). Swaddle and Tregloan recently reviewed electrode reactions of metal complexes in solution at high pressure (125). The main emphasis in this section is on some of the most recent work that we have been involved in, dealing with long-distance electron-transfer processes involving cytochrome c. However, by way of introduction, a short discussion on the effect of pressure on self-exchange (symmetrical) and nonsymmetrical electron-transfer reactions between transition metal complexes that have been reported in the literature, is presented. [Pg.35]

Contents Introduction. - Experimental Techniques Production of Energetic Atoms. Radiochemical Separation Techniques. Special Physical Techniques. - Characteristics of Hot Atom Reactions Gas Phase Hot Atom Reactions. Liquid Phase Hot Atom Reactions. Solid Phase Hot Atom Reactions. - Applications of Hot Atom Chemistry and Related Topics Applications in Inorganic, Analytical and Geochemistry. Applications in Physical Chemistry. Applications in Biochemistry and Nuclear Medicine. Hot Atom Chemistry in Energy-Related Research. Current Topics Related to Hot Atom Chemistry and Future Scope. - Subject Index. [Pg.121]

A. Reisman, Phase Equilibria, Basic Principles, Applications, and Experimental Techniques, Academic Press, New York, 1970 H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, New York, 1971 J. R. Cunningham and D. K. Jones, eds.. Experimental Results for Phase Equilibria and Pure Component Properties, American Institute of Chemical Engineers, New York, 1991 S. Malanowski, Modelling Phase Equilibria Thermodynamic Background and Practical Tools, Wiley, New York, 1992 J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Eluid-Phase Equilibria, Prentice-Hall, Upper Saddle River, NJ, 1999. [Pg.529]

This paper has provided the reader with an introduction to a class of polymers that show great potential as reverse osmosis membrane materials — poly(aryl ethers). Resistance to degradation and hydrolysis as well as resistance to stress Induced creep make membranes of these polymers particularly attractive. It has been demonstrated that through sulfonation the hydrophilic/hydrophobic, flux/separation, and structural stability characteristics of these membranes can be altered to suit the specific application. It has been Illustrated that the nature of the counter-ion of the sulfonation plays a role in determining performance characteristics. In the preliminary studies reported here, one particular poly(aryl ether) has been studied — the sulfonated derivative of Blsphenol A - polysulfone. This polymer was selected to serve as a model for the development of experimental techniques as well as to permit the investigation of variables... [Pg.345]

The purpose of this article is to review studies carried out on hemes incorporated inside the micellar cavity, and examine the effect of micellar interaction on the electronic and structural properties of the heme. A comparison of these results with those on the metalloproteins is clearly in order to assess their suitability as models. The article begins with a general introduction to micellar properties, the incorporation of hemes in the micellar cavity, and then discusses results on hemes inside the micelles with different oxidation and spin states, and stereochemistry. The experimental techniques used in the studies on these aqueous detergent micelles are mostly NMR and optical spectroscopy. The present article has therefore a strong emphasis on NMR spectroscopy, since this technique has been used very extensively and purposefully for studies on hemes inside micellar cavities. [Pg.117]

Materials. Since the oxidation of thiols is strongly catalyzed by traces of metal ions, all experimental techniques were designed to prevent the introduction of extraneous metallic impurities. Preparation and storage of reagents were completed in acid-washed, steam-cleaned glassware. Deionized water was used to prepare all solutions. [Pg.229]

In the following pages of this chapter, brief introductions or literature references to the various experimental techniques are given. Closely related theoretical and computational work is described in Chapter 22 by Borden in this book. " The interplay of theory and experiment, as well as the mumally supporting roles of preparative wet chemistry and instrumental techniques, are emphasized. [Pg.171]

The introduction and use of a hydraulic density, termed in a different way, in liquid-porous solid fluidization has been done by Nesbitt and Petersen (1998). They point out that for resins, which are porous in nature, it might be more correct to use an apparent density of fluidization (pap), a property relevant only when the resin is in a suspension, with the fluid phase intruding into the pores. However, the authors did not use eq. (3.558), but an experimental technique, measuring the terminal velocity of the resin particles and evaluating the apparent density using the Shiller and Naumann terminal velocity model ... [Pg.234]

Introduction 198 Experimental techniques 200 Ion cyclotron resonance spectrometry 201 Flowing afterglow 203 High pressure mass spectrometry 204 General features of gas-phase ion-molecule reactions 204 Gas-phase SN2 reactions involving negative ions 206 Thermochemical considerations 206 General aspects of gas-phase SN2 reactions 207 Stereochemistry 209... [Pg.197]

Exothermic gas-phase ion-molecule reactions are generally characterized by very large rate constants. The two examples quoted in the introduction can be considered as typical cases suitable for observation by present day experimental techniques. The fact that these reactions exhibit such rate constants has been taken as an indication that activation energies are either nil or amount at best to less than 5 kcal mol". Admittedly, few experiments have... [Pg.204]

Lasers come next, not because of their intrinsic construction and mode of operation, but because they open up new dimensions of technique, precision, and scale. The experimental technique of physical chemistry that has benefited most from the laser is Raman spectroscopy, which barely existed before their introduction and is now in full flower, showing enormously detailed and interesting information about bulk matter and surfaces. A technique that was essentially invented by the laser is femtochemistry, where we can catch atoms red-handed in the act of reaction. Lasers have brought us right to the heart of reactions, and as such we must build them into our courses. [Pg.50]

Chapter 1 serves as an introduction to both volumes and is a survey of the fundamental principles of electrode kinetics. Chapter 2 deals with mass transport — how material gets to and from an electrode. Chapter 3 provides a review of linear sweep and cyclic voltammetry which constitutes an extensively used experimental technique in the field. Chapter 4 discusses a.c. and pulse methods which are a rich source of electrochemical information. Finally, Chapter 5 discusses the use of electrodes in which there is forced convection, the so-called hydrodynamic electrodes . [Pg.460]

Progress in the Raman spectroscopic study of carbohydrates became possible during the past few years owing to the introduction of laser sources. Before discussing the results of laser-Raman spectroscopy applied to carbohydrates, we shall give a brief recapitulation of the physical principles of the Raman effect. Experimental techniques of infrared spectroscopy have been described in previous reviews,116,17 but no such description has been given for the Raman method. That is why the Description Section, which follows, will include the physical fundamentals of the method, as well as the sampling techniques. [Pg.67]

The purpose of this chapter is to provide an introduction to the scope and limitations of radical cyclization reactions. Emphasis will be placed on the reactivity profile of radicals with respect to chemo-, regio-and stereo-selectivity. Because most sequential radical reactions include at least one cyclization, they are also presented in this chapter. The organization of this chapter is similar to the previous chapter on radical additions. However, the basic principles of radical reactions, selectivity requirements, methods to conduct radical reactions (including experimental techniques), and mechanisms are extensively discussed in the previous chapter, and these aspects will be reiterated rather sparingly. A reader who is not familiar with the principles of radical reactions as applied to synthesis should read the addition chapter (Chapter 4.1, this volume) first. [Pg.780]

The thermochemistry of silicon-containing anions has very recently been compiled in an excellent review by Damrauer and Hankin4, as well as in an earlier work by Damrauer3. In these reviews the authors give a detailed introduction into the experimental techniques as well as the cycles used to obtain thermodynamic data from negative-ion gas-phase chemistry. We will therefore confine ourselves here to the discussion of a few exemplary cases, and for a more detailed overview the reader is referred to the above-mentioned publications and the literature cited therein. [Pg.1109]

The formation of monolayers and their thermodynamic investigation was described in the last chapter. A good introduction to the classic experimental techniques and results is given by Refs. [587] [588], We start by discussing optical techniques. [Pg.286]

Zone electrophoresis is used mainly as an analytical technique and, to a lesser extent, for small-scale preparative separations. The main applications are in the biochemical and clinical fields, particularly in the study of protein mixtures. Like chromatography, zone electrophoresis is mainly a practical subject, and the most important advances have involved improvements in experimental technique and the introduction and development of a range of suitable supporting media. Much of the earlier work involved the use of filter paper as the supporting medium however, in recent years filter paper has been somewhat superseded by other materials, such as cellulose acetate, starch gel and polyacrylamide gel, which permit sharper separations. [Pg.196]


See other pages where Experimental techniques introduction is mentioned: [Pg.2926]    [Pg.22]    [Pg.564]    [Pg.589]    [Pg.1194]    [Pg.524]    [Pg.1584]    [Pg.319]    [Pg.1200]    [Pg.1]    [Pg.243]    [Pg.44]    [Pg.27]    [Pg.8]    [Pg.472]    [Pg.35]    [Pg.415]    [Pg.92]    [Pg.648]    [Pg.73]    [Pg.69]    [Pg.450]    [Pg.186]    [Pg.1204]    [Pg.152]    [Pg.228]    [Pg.1535]    [Pg.266]    [Pg.404]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



Introduction techniques

© 2024 chempedia.info