Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Exothermic reactions solution

Reactions in porous catalyst pellets are Invariably accompanied by thermal effects associated with the heat of reaction. Particularly In the case of exothermic reactions these may have a marked influence on the solutions, and hence on the effectiveness factor, leading to effectiveness factors greater than unity and, In certain circumstances, multiple steady state solutions with given boundary conditions [78]. These phenomena have attracted a great deal of interest and attention in recent years, and an excellent account of our present state of knowledge has been given by Arls [45]. [Pg.156]

Fit a 1500 ml. bolt-head flask with a reflux condenser and a thermometer. Place a solution of 125 g. of chloral hydrate in 225 ml. of warm water (50-60°) in the flask, add successively 77 g. of precipitated calcium carbonate, 1 ml. of amyl alcohol (to decrease the amount of frothing), and a solution of 5 g. of commercial sodium cyanide in 12 ml. of water. An exothermic reaction occurs. Heat the warm reaction mixture with a small flame so that it reaches 75° in about 10 minutes and then remove the flame. The temperature will continue to rise to 80-85° during 5-10 minutes and then falls at this point heat the mixture to boiling and reflux for 20 minutes. Cool the mixture in ice to 0-5°, acidify with 107-5 ml. of concentrated hydrochloric acid. Extract the acid with five 50 ml. portions of ether. Dry the combined ethereal extracts with 10 g. of anhydrous sodium or magnesium sulphate, remove the ether on a water bath, and distil the residue under reduced pressure using a Claiseii flask with fractionating side arm. Collect the dichloroacetic acid at 105-107°/26 mm. The yield is 85 g. [Pg.431]

Prepare a solution containing about 100 g, of potassium hypochlorite from commercial calcium hypochlorite ( H.T.H. ) as detailed under -Dimethylacrylic Acid, Section 111,142, Note 1, and place it in a 1500 ml. three-necked flask provided with a thermometer, a mechanical stirrer and a reflux condenser. Warm the solution to 55° and add through the condenser 85 g, of p-acetonaphthalene (methyl p-naphthyl ketone) (1). Stir the mixture vigorously and, after the exothermic reaction commences, maintain the temperature at 60-70° by frequent cooling in an ice bath until the temperature no longer tends to rise (ca. 30 minutes). Stir the mixture for a further 30 minutes, and destroy the excess of hypochlorite completely by adding a solution of 25 g. of sodium bisulphite in 100 ml. of water make sure that no hypochlorite remains by testing the solution with acidified potassium iodide solution. Cool the solution, transfer the reaction mixture to a 2-litre beaker and cautiously acidify with 100 ml. of concentrated hydrochloric acid. Filter the crude acid at the pump. [Pg.766]

Method 2. Place a mixture of 126-5 g. of benzyl chloride, 76 g. of thiourea and loO ml. of rectified spirit in a 500 ml. round-bottomed flask fitted with a reflux condenser. Warm on a water bath. A sudden exothermic reaction soon occurs and aU the thiourea passes into solution. Reflux the resulting yellow solution for 30 minutes and then cool in ice. Filter off the white crystals and dry in the air upon filter paper. Concentrate the filtrate to half its original volume and thus obtain a further small crop of crystals. The yield of crude hydrochloric acid as in Method 1 the m.p. is raised to 150°, although on some occasions the form, m.p. 175°, separates. [Pg.966]

Girard s reagent P , C5H5NCH2C0NHNH2 C1. In a 1-htre threenecked flask, equipped as in the previous preparation, place 200 ml. of absolute ethyl alcohol, 63 g. (64 -5 ml.) of pure anhydrous pyridine and 98 - 5 g. (84 5 ml.) of ethyl chloroacetate. Heat the mixture under reflux for 2-3 hours until the formation of the quaternary salt is complete acidify a small test-portion with dilute sulphuric acid it should dissolve completely and no odour of ethyl chloroacetate should be apparent. Cool the mixture in ice and salt. Replace the thermometer by a dropping funnel, and add a solution of 40 g. of 100 per cent, hydrazine hydrate in 60 ml. of absolute ethanol all at once. A vigorous exothermic reaction soon develops and is accompanied by vigorous effervescence. The pro duct separates almost immediately. When cold, filter with suction, wash... [Pg.977]

Prepare a saturated solution of sodium sulphide, preferably from the fused technical sodium polysulphide, and saturate it with sulphur the sulphur content should approximate to that of sodium tetrasulphide. To 50 ml. of the saturated sodium tetrasulphide solution contained in a 500 ml. round-bottomed flask provided with a reflux condenser, add 12 -5 ml. of ethylene dichloride, followed by 1 g. of magnesium oxide to act as catalyst. Heat the mixture until the ethylene dichloride commences to reflux and remove the flame. An exothermic reaction sets in and small particles of Thiokol are formed at the interface between the tetrasulphide solution and the ethylene chloride these float to the surface, agglomerate, and then sink to the bottom of the flask. Decant the hquid, and wash the sohd several times with water. Remove the Thiokol with forceps or tongs and test its rubber-like properties (stretching, etc.). [Pg.1024]

A sodium stannite solution was prepared by addition of aqueous sodium hydroxide (2.5 mol, lOOg) to aqueous stannous chloride (0.25 mol, 56g). The initially formed precipitate redissolved to form a clear solution. This solution was gradually added to a solution of 16.3g (0.1 mol) phenyl-2-nitropropene in THF at room temperature. A slightly exothermic reaction ensued, and the reaction mixture was stirred for 30 min, a saturated sodium chloride solution was added, and the solution was extracted with ether and the pooled extracts were evaporated under vacuum to give essentially pure P2P oxime in 80% yield. [Pg.167]

METHOD 4 [115]-80% phenol in aqueous H2SO4 soiution of pH 3 is brought to 50 C. 30% H2O2 is then added causing an exothermic reaction and a temperature of 15 C over 3-4 minutes time. 6% aqueous H2SO3 is added after 4.5 minutes, the solution quickly cooled and extracted with isopropyl acetone (Strike would think that another solvent like methyl ethyl ketone could be used) to give 60% catechol. [Pg.212]

To a solution of ethylnagnesium bromide in 350 ml of THF, prepared from 0.5 mol of ethyl bromide (see Chapter 11, Exp. 6) was added in 10 min at 10°C 0.47 mol of 1-hexyne (Exp. 62) and at 0°C 0.47 mol of trimethylsilylacetylene (Exp. 31) or a solution of 0.60 mol of propyne in 70 ml of THF (cooled below -20°C). With trimethyl si lylacetylene an exothermic reaction started almost immediately, so that efficient cooling in a bath of dry-ice and acetone was necessary in order to keep the temperature between 10 and 15°C. When the exothermic reaction had subsided, the mixture was warmed to 20°C and was kept at that temperature for 1 h. With 1-hexyne the cooling bath was removed directly after the addition and the temperature was allowed to rise to 40-45°C and was maintained at that level for 1 h. [Pg.71]

In the flask were placed 10.0 g of the propargylic amine (see Chapter lIII-5, Exp. 1). The air in the flask was replaced with nitrogen and a solution of 0.01 mol of KO-tert.-Ci,H,3 in 10 g of THF (free from hydroperoxide) was added. The mixture was warmed at about 40 C. A weakly exothermic reaction was observed and the temperature rose to about 45°C. After 1-2 min the gel originally present, had disappeared almost completely and a brown solution had formed. The refractive index of the solution (note 1) was measured after intervals of about 2 min. After the... [Pg.99]

To a solution of 0.5D mol of KO-tert.-C Hg (uncomplexed base, commercially available) and 180 ml of dry THF was added at room temperature 0.25 mol of the Mannich product. A weakly exothermic reaction took place. The mixture was heated in a bath at 50°C and the THF started to reflux (occasional cooling in an ice-water bath may be necessary). When the refluxing had ceased, the mixture was heated for 30 min in a bath at 70°C, then cooled to room temperature and 300 ml of redistilled, dry pentane were added. The precipitate of potassium raethoxide and... [Pg.134]

To a suspension of a tinc-copper couple in 150 ml of 100 ethanol, prepared from 80 g of zinc powder (see Chapter II, Exp. 18), was added at room temperature 0.10 mol of the acetylenic chloride (see Chapter VIII-2, Exp. 7). After a few minutes an exothermic reaction started and the temperature rose to 45-50°C (note 1). When this reaction had subsided, the mixture was cooled to 35-40°C and 0,40 mol of the chloride was added over a period of 15 min, while maintaining the temperature around 40°C (occasional cooling). After the addition stirring was continued for 30 min at 55°C, then the mixture was cooled to room temperature and the upper layer was decanted off. The black slurry of zinc was rinsed five times with 50-ml portions of diethyl ether. The alcoholic solution and the extracts were combined and washed three times with 100-ml portions of 2 N HCl, saturated with ammonium chloride. [Pg.191]

To a mixture of 65 ml of dry benzene and 0.10 mol of freshly distilled NN-di-ethylamino-l-propyne were added 3 drops of BFa.ether and 0.12 mol of dry propargyl alcohol was added to the reddish solution in 5 min. The temperature rose in 5-10 min to about 45°C, remained at this level for about 10 min and then began to drop. The mixture was warmed to 60°C, whereupon the exothermic reaction made the temperature rise in a few minutes to B5 c. This level was maintained by occasional cooling. After the exothermic reaction (3,3-sigmatropic rearrangement) had subsided, the mixture was heated for an additional 10 min at 80°C and the benzene was then removed in a water-pump vacuum. The red residue was practically pure acid amide... [Pg.200]

The extracts were kept below 0°C (note 5). The combined extracts were washed with 5i acetic acid and subsequently dried over magnesium sulfate (note 6). The extract was concentrated in a water-pump vacuum to about 60 ml by means of the rotary evaporator, care being taken that the bath temperature remained below 25°C. The remaining pale yellow solution was warmed to about 35°C (internal temperature). The temperature rose gradually but was kept at about 45°C by occasional cooling. When after about 45 min the exothermic reaction had subsided, the flask was placed in a water-bath at 55°C. After 30 min the remaining pentane was removed in a water--pump vacuum. The orange residue, n 1.5878, yield aa. 92% was almost pure allenic dithioester. [Pg.202]

A mixture of 0.30 mol of the tertiairy acetylenic alcohol, 0.35 mol of acetyl chloride (freshly distilled) and 0.35 mol of /V/V-diethylaniline was gradually heated with manual swirling. At 40-50°C an exothermic reaction started and the temperature rose in a few minutes to 120°C. It was kept at that level by occasional cooling. After the exothermic reaction had subsided, the mixture was heated for an additional 10 min at 125-130°C, during which the mixture was swirled by hand so that the salt that had been deposited on the glass wall was redissolved. After cooling to below 50°C a mixture of 5 ml of 36% HCl and 200 ml of ice-water was added and the obtained solution was extracted with small portions of diethyl ether. The ethereal solutions were washed with water and subsequently dried over magnesium sulfate. The solvent was removed by evaporation in a water-pump vacuum... [Pg.222]

In the flask were placed a solution of 7 g of anhydrous LiBr in 50 ml of dry THF, 0.40 mol of the allenic bromide (see Chapter VI, Exp. 31) and 0.50 mol of finely powdered copper(I) cyanide. The mixture was swirled by hand and the temperature rose in about 15 min to 60°C. It was kept between 55 and 60°C by occasional cooling in a water-bath. When the exothermic reaction had subsided, the flask was warmed for an additional 30 min at 55-60°C and the brown solution was then poured into a vigorously stirred solution of 30 g of NaCN and 100 g of NH,C1 in 300 ml of water, to which 150 ml of diethyl ether had been added. During this operation the temperature was kept below 20 c. The reaction flask was subsequently rinsed with the NaCN solution. After separation of the layers the aqueous layer was extracted with ether. The extracts were dried over magnesium sulfate and then concentrated... [Pg.226]

A typical flow diagram for pentaerythritol production is shown in Figure 2. The main concern in mixing is to avoid loss of temperature control in this exothermic reaction, which can lead to excessive by-product formation and/or reduced yields of pentaerythritol (55,58,59). The reaction time depends on the reaction temperature and may vary from about 0.5 to 4 h at final temperatures of about 65 and 35°C, respectively. The reactor product, neutralized with acetic or formic acid, is then stripped of excess formaldehyde and water to produce a highly concentrated solution of pentaerythritol reaction products. This is then cooled under carefully controlled crystallization conditions so that the crystals can be readily separated from the Hquors by subsequent filtration. [Pg.465]

Another method of preparing mercuric acetate is the oxidation of mercury metal using peracetic acid dissolved in acetic acid. Careful control of the temperature is extremely important because the reaction is quite exothermic. A preferred procedure is the addition of approximately half to two-thirds of the required total of peracetic acid solution to a dispersion of mercury metal in acetic acid to obtain the mercurous salt, followed by addition of the remainder of the peracetic acid to form the mercuric salt. The exothermic reaction is carried to completion by heating slowly and cautiously to reflux. This also serves to decompose excess peracid. It is possible and perhaps more economical to use 50% hydrogen peroxide instead of peracetic acid, but the reaction does not go quite as smoothly. [Pg.112]

Aqueous sulfamic acid solutions are quite stable at room temperature. At higher temperatures, however, acidic solutions and the ammonium salt hydroly2e to sulfates. Rates increase rapidly with temperature elevation, lower pH, and increased concentrations. These hydrolysis reactions are exothermic. Concentrated solutions heated in closed containers or in vessels having adequate venting can generate sufficient internal pressure to cause container mpture. An ammonium sulfamate, 60 wt % aqueous solution exhibits mnaway hydrolysis when heated to 200°C at pH 5 or to 130°C at pH 2. The danger is minimised in a weU-vented container, however, because the 60 wt % solution boils at 107°C (8,10). Hydrolysis reactions are ... [Pg.61]

Thiol spills are handled ia the same manner that all chemical spills are handled, with the added requirement that the odor be eliminated as rapidly as possible. In general, the leak should be stopped, the spill should be contained, and then the odor should be reduced. The odor can be reduced by sprayiag the spill area with sodium hypochlorite (3% solution), calcium hypochlorite solution (3%), or hydrogen peroxide (3—10% solution). The use of higher concentrations of oxidant gives strongly exothermic reactions, which iacrease the amount of thiol ia the vapor, as well as pose a safety ha2ard. The apphcation of an adsorbent prior to addition of the oxidant can be quite helpful and add to the ease of cleanup. [Pg.15]

Solution Process. With the exception of fibrous triacetate, practically all cellulose acetate is manufactured by a solution process using sulfuric acid catalyst with acetic anhydride in an acetic acid solvent. An excellent description of this process is given (85). In the process (Fig. 8), cellulose (ca 400 kg) is treated with ca 1200 kg acetic anhydride in 1600 kg acetic acid solvent and 28—40 kg sulfuric acid (7—10% based on cellulose) as catalyst. During the exothermic reaction, the temperature is controlled at 40—45°C to minimize cellulose degradation. After the reaction solution becomes clear and fiber-free and the desired viscosity has been achieved, sufficient aqueous acetic acid (60—70% acid) is added to destroy the excess anhydride and provide 10—15% free water for hydrolysis. At this point, the sulfuric acid catalyst may be partially neutralized with calcium, magnesium, or sodium salts for better control of product molecular weight. [Pg.254]

These mechanisms are characterized by the relative magnitudes of the heats of reaction, solution, or adsorption (see Adsorption, separation). AH useflil drying mechanisms are exothermic. Phosphoms pentoxide is a Class 1 drying agent that reacts with water to form a polyphosphoric acid (2) ... [Pg.505]

Acrylate esters can be polymerised in a variety of ways. Among these is ionic polymerisation, which although possible (6—9), has not found industrial apphcation, and practically all commercial acryUc elastomers are produced by free-radical polymerisation. Of the four methods available, ie, bulk, solution, suspension, and emulsion polymerisation, only aqueous suspension and emulsion polymerisation are used to produce the ACMs present in the market. Bulk polymerisation of acrylate monomers is hasardous because it does not allow efficient heat exchange, requited by the extremely exothermic reaction. [Pg.474]


See other pages where Exothermic reactions solution is mentioned: [Pg.356]    [Pg.535]    [Pg.776]    [Pg.798]    [Pg.835]    [Pg.837]    [Pg.842]    [Pg.916]    [Pg.977]    [Pg.139]    [Pg.160]    [Pg.15]    [Pg.25]    [Pg.121]    [Pg.139]    [Pg.149]    [Pg.201]    [Pg.225]    [Pg.227]    [Pg.68]    [Pg.456]    [Pg.286]    [Pg.97]    [Pg.316]    [Pg.129]    [Pg.132]    [Pg.57]    [Pg.126]   
See also in sourсe #XX -- [ Pg.187 ]

See also in sourсe #XX -- [ Pg.215 ]




SEARCH



Exotherm reactions

Exothermic reaction

Exothermic, exothermal

Exothermicity

Exotherms

© 2024 chempedia.info