Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ethylene/propylene copolymers crystallinity

Linnig,F.J Parks,E.J., Wood,L.A. Ethylene-propylene copolymers crystallinity, infrared and creep studies. J. Appl. Polymer Sci. 8, 2645-2651 (1964). [Pg.127]

The isoprene units in the copolymer impart the ability to crosslink the product. Polystyrene is far too rigid to be used as an elastomer but styrene copolymers with 1,3-butadiene (SBR rubber) are quite flexible and rubbery. Polyethylene is a crystalline plastic while ethylene-propylene copolymers and terpolymers of ethylene, propylene and diene (e.g., dicyclopentadiene, hexa-1,4-diene, 2-ethylidenenorborn-5-ene) are elastomers (EPR and EPDM rubbers). Nitrile or NBR rubber is a copolymer of acrylonitrile and 1,3-butadiene. Vinylidene fluoride-chlorotrifluoroethylene and olefin-acrylic ester copolymers and 1,3-butadiene-styrene-vinyl pyridine terpolymer are examples of specialty elastomers. [Pg.20]

For example, a PE-fe-poly(ethylene-co-propylene) diblock composed of crystalline PE and amorphous ethylene/propylene copolymer segments was synthesized from ethylene and ethylene/propylene. The addition of MAO and Ti-FI catalyst 40 (Fig. 25) to an ethylene-saturated toluene at 25 °C resulted in the rapid formation of a living PE (Mn 115,000, MJMn 1.10). The addition of ethylene/propylene (1 3 volume ratio) to this living PE formed a PE-/>poly(ethylcnc-co-propylcnc) block copolymer (Mn 211,000, MJMn 1.16, propylene content 6.4 mol%) [30], As expected, the polymer exhibits a high Tm of 123 °C, indicating that this block copolymer shows good elastic properties at much higher temperatures than the conventional random copolymers of similar densities. [Pg.39]

ABA ABS ABS-PC ABS-PVC ACM ACS AES AMMA AN APET APP ASA BR BS CA CAB CAP CN CP CPE CPET CPP CPVC CR CTA DAM DAP DMT ECTFE EEA EMA EMAA EMAC EMPP EnBA EP EPM ESI EVA(C) EVOH FEP HDI HDPE HIPS HMDI IPI LDPE LLDPE MBS Acrylonitrile-butadiene-acrylate Acrylonitrile-butadiene-styrene copolymer Acrylonitrile-butadiene-styrene-polycarbonate alloy Acrylonitrile-butadiene-styrene-poly(vinyl chloride) alloy Acrylic acid ester rubber Acrylonitrile-chlorinated pe-styrene Acrylonitrile-ethylene-propylene-styrene Acrylonitrile-methyl methacrylate Acrylonitrile Amorphous polyethylene terephthalate Atactic polypropylene Acrylic-styrene-acrylonitrile Butadiene rubber Butadiene styrene rubber Cellulose acetate Cellulose acetate-butyrate Cellulose acetate-propionate Cellulose nitrate Cellulose propionate Chlorinated polyethylene Crystalline polyethylene terephthalate Cast polypropylene Chlorinated polyvinyl chloride Chloroprene rubber Cellulose triacetate Diallyl maleate Diallyl phthalate Terephthalic acid, dimethyl ester Ethylene-chlorotrifluoroethylene copolymer Ethylene-ethyl acrylate Ethylene-methyl acrylate Ethylene methacrylic acid Ethylene-methyl acrylate copolymer Elastomer modified polypropylene Ethylene normal butyl acrylate Epoxy resin, also ethylene-propylene Ethylene-propylene rubber Ethylene-styrene copolymers Polyethylene-vinyl acetate Polyethylene-vinyl alcohol copolymers Fluorinated ethylene-propylene copolymers Hexamethylene diisocyanate High-density polyethylene High-impact polystyrene Diisocyanato dicyclohexylmethane Isophorone diisocyanate Low-density polyethylene Linear low-density polyethylene Methacrylate-butadiene-styrene... [Pg.958]

Fig. 44. The SFM amplitude (a) and force modulation (b) maps of a cryogenic faced impact copolymer (ICP) composed of a polypropylene (PP) matrix with high ethylene (60 wt. %) ethylene-propylene copolymer (EP). Crystalline polyethylene (PE) phases are seen in the EP domains, which are surrounded by the PP matrix. Modulus contrast in the force modulation (drive amplitude 100 mV) image associated with the three polymers the stiff PP matrix is dark, the soft EP domains are light. The crystalline PE regions have modulus between the PP and the EP,thus an intermediate shade of grey is observed for the PE domains [128]... Fig. 44. The SFM amplitude (a) and force modulation (b) maps of a cryogenic faced impact copolymer (ICP) composed of a polypropylene (PP) matrix with high ethylene (60 wt. %) ethylene-propylene copolymer (EP). Crystalline polyethylene (PE) phases are seen in the EP domains, which are surrounded by the PP matrix. Modulus contrast in the force modulation (drive amplitude 100 mV) image associated with the three polymers the stiff PP matrix is dark, the soft EP domains are light. The crystalline PE regions have modulus between the PP and the EP,thus an intermediate shade of grey is observed for the PE domains [128]...
A common example of a copolymer is an ethylene-propylene copolymer. Although both monomers would result in semi-crystalline polymers when polymerized individually, the melting temperature disappears in the randomly distributed copolymer with ratios between 35/65 and 65/35, resulting in an elastomeric material, as shown in Fig. 1.19. In fact, EPDM rubbers are continuously gaining acceptance in industry because of their resistance to weathering. On the other hand, the ethylene-propylene block copolymer maintains a melting temperature for all ethylene/propylene ratios, as shown in Fig. 1.20. [Pg.16]

At room temperature, PE is a semi-crystalline plastomer (a plastic which on stretching shows elongation like an elastomer), but on heating crystallites melt and the polymer passes through an elastomeric phase. Similarly, by hindering the crystallisation of PE (that is, by incorporating new chain elements), amorphous curable rubbery materials like ethylene propylene copolymer (EPM), ethylene propylene diene terpolymer (EPDM), ethylene-vinyl acetate copolymer (EVA), chlorinated polyethylene (CM), and chlorosulphonated polyethylene (CSM) can be prepared. [Pg.169]

It is interesting that some heterogeneous superhigh-activity Ziegler-Natta catalysts such as MgC /TiCU/LB—AlEt3 also yield random ethylene/propylene copolymers. These copolymers, however, exhibit a blocky nature and highly isotactic propylene sequences (with no 2,1-inserted propylene units) that contribute to undesired crystallinity [68,456]. [Pg.181]

Figure 1 Polymer enchainment patterns occurring in polyethylene (PE), ethylene-propylene copolymer (EP), and polypropylene (PP) chains (HDPE = crystalline high-density polyethylene, LLDPE — linear low-density polyethylene, LDPE = low-density polyethylene, EP rubber = elastomeric ethylene-propylene copolymer). Figure 1 Polymer enchainment patterns occurring in polyethylene (PE), ethylene-propylene copolymer (EP), and polypropylene (PP) chains (HDPE = crystalline high-density polyethylene, LLDPE — linear low-density polyethylene, LDPE = low-density polyethylene, EP rubber = elastomeric ethylene-propylene copolymer).
It follows directly from this that the theoretical maximum amount of styrene units in the polymer is 50 mole%, i.e. 77% by weight and Dow claim that it can produce copolymers (which it tends to refer to as interpolymers, or more specifically as ethylene-styrene interpolymers, ESIs) from this figure down to 17 wt%. As experienced with ethylene-propylene copolymers the copolymers with high ethylene contents show a measure of crystallinity and indeed crystallinity can be traced in polymers up to 50 wt% styrene (Figure 11.18). Data on glass transition temperatures indicate that the polymers are rubbery below normal indoor ambient temperatures with up to about 70 wt% of styrene. (It is of interest here that the data here is in line with the author s suggestion for the Tg of polyethylene given in Section 10.4.)... [Pg.308]

Fig. 5. Infrared spectra of ethylene-propylene copolymers showing crystallinity... Fig. 5. Infrared spectra of ethylene-propylene copolymers showing crystallinity...
Furthermore, monomers from which crystalline homopolymer can be produced, such as high-density polyethylene and polypropylene, can be copolymerized to produce resins with controllably reduced crystallinity and thus greater transparency. The ethylene/propylene copolymers may range from partially crystalline plastics to amorphous elastomers. [Pg.222]

Ethylene-propylene copolymers are useful models for homopolymer blends in that they also are biphasic, and their thermo-oxidative response [Singh et al, 1993] indicates that degradation occurs mainly in the crystalline PP phase and not in the amorphous. Ethylene/vinyl acetate copolymer-rubber blends have also been studied [Koshy et al., 1992],... [Pg.1003]

IV to VIII metals and base metal alkyls of Group II or III metals (Penczek and Premia, 2012 Boor, 1979 Ciardelli, 1992). It arose from the spectacular discovery of Ziegler et al. (1955) that mixtures of titanium tetrachloride and aluminum alkyls polymerize ethylene at low pressures and temperatures and from the equally spectacular discovery by Natta (1955) that the Ziegler catalysts can stereospecifically polymerize monoolefins to produce tactic, crystalline polymers. As can be imagined, these systems can involve many combinations of catalyst components, not all of which are catalytically active or stereospecific. However, we shall be concerned here only with polymerizations involving the commercial elastomers, principally polyisoprene, polybutadiene (Duck and Locke, 1977 Zohuri et al., 2012 Teyssie et al., 1988), and the ethylene-propylene copolymers (Schobel et al., 2012 Ver Strate, 1986 Davis et al., 1996 Noordermeer, 2003 Baldwin and Strate, 1972). [Pg.80]

FIGURE 12.3 Variation in tensile strength of unvulcanized, compounded blends of ethylene-propylene copolymer due to differences in composition and crystallinity distribution. [Pg.564]


See other pages where Ethylene/propylene copolymers crystallinity is mentioned: [Pg.65]    [Pg.308]    [Pg.21]    [Pg.76]    [Pg.3]    [Pg.39]    [Pg.500]    [Pg.90]    [Pg.180]    [Pg.171]    [Pg.363]    [Pg.10]    [Pg.14]    [Pg.3205]    [Pg.3210]    [Pg.171]    [Pg.107]    [Pg.191]    [Pg.3254]    [Pg.65]    [Pg.85]    [Pg.129]    [Pg.198]    [Pg.265]    [Pg.1033]    [Pg.1036]    [Pg.3204]    [Pg.3209]    [Pg.218]    [Pg.354]    [Pg.402]    [Pg.422]    [Pg.67]    [Pg.24]   
See also in sourсe #XX -- [ Pg.307 ]




SEARCH



Copolymers ethylene

Crystalline Ethylene

Crystalline propylene

Ethylene propylene

Ethylene-propylene copolymers

Ethylene-propylene crystallinity

PROPYLENE COPOLYMER

© 2024 chempedia.info