Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stationary emission sources

Exhaust emissions of HC, CO, and NOx—the products of incomplete combustion—are controlled primarily by a catalytic converter, in conjunction with exhaust gas recirculation and increasingly sophisticated technology for improving combustion efficiency, including electronic emission controls. See emissions (stationary source),... [Pg.156]

In the 1980s, there were significant developments in European NO, control legislation and policies. The impetus was concern about the effects of NO, emissions on forests. Although vehicles produce the majority of NO, emissions, stationary sources were the main targets of legislation. [Pg.876]

Air Quality Criteria forTead Supplement to the 1986 Addendum, U.S. EPA, Environmental Criteria and Assessment Office, Washington, D.C., 1990. Technical Support Document to Proposed Airborne Toxic Control Measure for Emissions of Toxic Metalsfrom Non-Ferrous Metal Melting, State of California Air Resources Board, Stationary Source Division, Sacramento, Calif., 1992. [Pg.141]

Hazardous Air Pollutants. Tide 3 of the CAAA of 1990 addresses the release of hazardous air poUutants (HAPs) by requiring both the identification of major stationary sources and area source categories for 189 toxic chemicals and the promulgation of control standards. Major sources of air toxics, also referred to as HAPs, include any stationary source or group of sources emitting 10 or more tons/yr of any single Hsted toxic chemical or 25 tons/yr of a combination of any Hsted toxic. Area sources of HAPs include smaller plants that emit less than the 10 or 20 tons/yr thresholds. The major sources of HAPs are typically industrial faciHties. However, Tide 3 requites the EPA to study potential health affects associated with emissions of HAPs from electric UtiHty boilers (11). [Pg.91]

Sources Subject to Prevention of Significant Deterioration (PSD) Sources subject to PSD regulations (40 CFR, Sec. 52.21, Aug. 7, 1980) are major stationary sources and major modifications located in attainment areas and unclassified areas. A major stationaiy source was defined as any source hsted in Table 25-4 with the potential to emit 100 tons per year or more of any pollutant regulated under the Clean Air Act (CAA) or any other source with the potential to emit 250 tons per year or more of any CAA pollutant. The potential to emit is defined as the maximum capacity to emit the pollutant under apphcable emission standards and permit conditions (after apphcation of any air pollution control equipment) excluding secondaiy emissions. A major modification is defined as any physical or operational change of a major stationaiy source producing a significant net emissions increase of any CAA pollutant (see Table 25-5). [Pg.2156]

The instrumental analyzer procedure, EPA Method 3A, is commonly used for the determination of oxygen and carbon dioxide concentrations in emissions from stationary sources. An integrated continuous gas sample is extracted from the test location and a portion of the sample is conveyed to one or more instrumental analyzers for determination of O9 and CO9 gas concentrations (see Fig. 25-30). The sample gas is conditioned prior to introduction to the gas analyzer by removing particulate matter and moisture. Sampling is conducted at a constant rate for the entire test run. Performance specifications and test procedures are provided in the method to ensure reliable data. [Pg.2199]

Particulates Procedures for testing a particulate source are more detailed than those used for sampling gases. Because particulates exhibit inertial effects and are not uniformly distributed within a stack, sampling to obtain a representative sample is more complex than for gaseous pollutants. EPA Method 5 (as shown in Fig. 25-32) is the most widely used procedure for determination of particulate emissions from a stationary source. In-stack samphng guidehnes are presented in EPA Method 17. [Pg.2199]

Sulfur Dioxide EPA Method 6 is the reference method for determining emissions of sulfur dioxide (SO9) from stationary sources. As the gas goes through the sampling apparatus (see Fig. 25-33), the sulfuric acid mist and sulfur trioxide are removed, the SO9 is removed by a chemical reaction with a hydrogen peroxide solution, and, finally, the sample gas volume is measured. Upon completion of the rim, the sulfuric acid mist and sulfur trioxide are discarded, and the collected material containing the SO9 is recovered for analysis at the laboratory. The concentration of SO9 in the sample is determined by a titration method. [Pg.2200]

Fluorides Two EPA reference methods, Method 13A and Method 13B, can be used to determine total fluoride emissions from a stationary source. The difference in the two methods is the analyti-... [Pg.2202]

SW-846, is used to measure emissions of semivolatile principal organic constituents. Method 0010 is designed to determine destruction and removal efficiency (DRE) of POHCs from incineration systems. The method involves a modification of the EPA Method 5 sampling train and may be used to determine particulate emission rates from stationary sources. The method is applied to semivolatile compounds, including polychlorinated biphenyls (PCBs), chlorinated dibenzodioxins and dibenzofurans, polycyclic organic matter, and other semivolatile organic compounds. [Pg.2207]

IDENTIFICATION AND QUANTIFICATION.—Such plan provisions shall expressly identify and quantify the emissions, if any, of any such pollutant or pollutants which will be allowed, from the construction and operation of major new or modified stationary sources in each such area. The plan shall demonstrate to the satisfaction of the Administrator that the emissions quantified for this purpose will be consistent with the achievement of reasonable further progress and will not interfere with the attainment of the applicable national ambient air quality standard by the applicable attainment date. [Pg.93]

Control of stationary sources of air pollution requires the application of either the control concepts mentioned in Chapter 28 of the control devices mentioned in Chapter 29. In some cases, more than one system or device must be used to achieve satisfactory control. The three general methods of control are (1) process change to a less polluting process or to a lowered emission from the existing process through modification of the operation,... [Pg.489]

Existing stationary sources may require modification of existing systems or installation of newer, more efficient control devices to meet more restrictive emission standards. Such changes are often required by control agencies when it can be shown that a new control technology is superior to older... [Pg.489]

Boubel, R. W., "Control of Particulate Emissions from Wood-Fired Boilers," Stationary Source Enforcement Series, EPA 340/1-77-026. U.S. Environmental Protection Agency, Washington, DC, 1977. [Pg.521]

The buyers of motor vehicles have been substantially positive concerning the need to have cleaner running vehicles. Although the required emission control devices and other mandated safety equipment have increased the cost of new motor vehicles, sales have not been significantly effected. The current environmental awareness and concern are evidence of the general population s new found knowledge and acceptance of both mobile and stationary source emission controls. [Pg.237]

Air Pollution Dispersion Application of air dispersion modeling principles and EPA tools to assessing environmental impacts from stack and area releases of pollutants Dispersion theory Gaussian plume model Ground-level concentrations Worst case scenarios Air quality impact assessments Stationary source emissions... [Pg.50]

In addition to chemicals covered under TRI, many other chemicals are released. For example, the EPA Office of Air Quality Planning and Standards has compiled air pollutant emission factors for determining the total air emissions of priority pollutants (e.g., VOCs, SO, NO, CO, particulates, etc.) from many refinery sources. The EPA Office of Aerometric Information Retrieval System (AIRS) contains a wide range of information related to stationary sources of air pollution, including the emissions of a number of air pollutants which may be of concern within a particular industry. With the exception of volatile organic compounds (VOCs), there is little overlap with the TRI chemicals reported above. [Pg.106]

EPA, 1982. U.S. EPA, Office of Air Quality Planning and Standards, "Control Techniques for Particulate Emissions from Stationary Sources, Volume 1," EPA-450/3-81-005a, Research Triangle Park, NC, September, 1982. [Pg.488]

Precipitation Pamphlet, Western Precipitation Company C-103R-1, Los Angeles, Calif., 1952, p. 3, E. Bakke The Application of Wet Electrostatic Precipitators for Control of Fine Particulate Matter, Paper presented at Symposium on Control of Fine Particulate Emissions from Industrial Sources for the Joint U.S.-U.S.S.R. Working Group, Stationary Source Air Pollution Control Technology, San Francisco, Calif., January 15-18, 1974, pp. 6-7. [Pg.492]

Control Technologies for Sulfur Oxide Emission from Stationary Sources," 2" Edition, Research Triangle Park, NC, April, 1981. [Pg.495]

ISO 9096. Stationary source emissions—Determination of concentration and mass flow rate of particulate material in gas-carrying ducts Manual gravimetric method. 1992, p. 30. [Pg.1023]


See other pages where Stationary emission sources is mentioned: [Pg.155]    [Pg.156]    [Pg.156]    [Pg.189]    [Pg.195]    [Pg.200]    [Pg.216]    [Pg.218]    [Pg.155]    [Pg.156]    [Pg.156]    [Pg.189]    [Pg.195]    [Pg.200]    [Pg.216]    [Pg.218]    [Pg.368]    [Pg.372]    [Pg.173]    [Pg.136]    [Pg.515]    [Pg.2201]    [Pg.151]    [Pg.411]    [Pg.489]    [Pg.17]    [Pg.26]    [Pg.26]    [Pg.124]    [Pg.543]   
See also in sourсe #XX -- [ Pg.156 ]




SEARCH



© 2024 chempedia.info