Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elements Fertilizer

Webster defines the term mineral as any chemical or compound occurring naturally as a product of inorganic processes. Since this chapter is primarily concerned with the use of minerals in plant and animal nutrition, terms such as plant nutrients , trace elements , fertilizer nutrients , and mineral additives are used within the context of Webster s definition, including inorganic fertilizers derived from naturally occurring minerals. [Pg.519]

Humification and Minor Element Fertilization of Organic Soils... [Pg.82]

Mathur, S. P. and Rayment, A. F. (1977). The influence of trace element fertilization on the decomposition rate and phosphatase activity of a Mesic Fibrisol. Can. J. Soil Sci. 57, 397-408. [Pg.615]

To determine the feasibiUty of, or need for, fertilization requires knowing (/) which of the required elements, if any, are deficient in the soil (2) what chemical forms of the deficient elements are assimilable by the plants and thus suitable as fertilizers (5) what quantity of fertilizer material is required to meet the needs of the crop and (4) whether the crop yield increase resulting from fertilizer appHcation would warrant the cost of the fertilizer production and appHcation. [Pg.213]

There are numerous variations of the wet process, but all involve an initial step in which the ore is solubilized in sulfuric acid, or, in a few special instances, in some other acid. Because of this requirement for sulfuric acid, it is obvious that sulfur is a raw material of considerable importance to the fertilizer industry. The acid—rock reaction results in formation of phosphoric acid and the precipitation of calcium sulfate. The second principal step in the wet processes is filtration to separate the phosphoric acid from the precipitated calcium sulfate. Wet-process phosphoric acid (WPA) is much less pure than electric furnace acid, but for most fertilizer production the impurities, such as iron, aluminum, and magnesium, are not objectionable and actually contribute to improved physical condition of the finished fertilizer (35). Impurities also furnish some micronutrient fertilizer elements. [Pg.224]

Secondary and Micronutrients in Fertilizers The great majority of farm fertilizers are produced, marketed, and appHed with regard only to the primary plant nutrient content. The natural supply of secondary and micronutrients in the majority of soils is usually sufficient for optimum growth of most principal crops. There are, however, many identified geographical areas and crop—soil combinations for which soil appHcation of secondary and/or micronutrient sources is beneficial or even essential. The fertilizer industry accepts the responsibiHty for providing these secondary and micronutrients, most often as an additive or adjunct to primary nutrient fertilizers. However, the source chemicals used to provide the secondary and micronutrient elements are usually procured from outside the fertilizer industry, for example from mineral processors. The responsibiHties of the fertilizer producer include procurement of an acceptable source material and incorporation in a manner that does not decrease the chemical or physical acceptabiHty of the fertilizer product and provides uniform appHcation of the added elements on the field. [Pg.241]

Calcium. Soil minerals are a main source of calcium for plants, thus nutrient deficiency of this element in plants is rare. Calcium, in the form of pulverized limestone [1317-65-3] or dolomite [17069-72-6] frequendy is appHed to acidic soils to counteract the acidity and thus improve crop growth. Such liming incidentally ensures an adequate supply of available calcium for plant nutrition. Although pH correction is important for agriculture, and liming agents often are sold by fertilizer distributors, this function is not one of fertilizer manufacture. [Pg.242]

Some of the principal forms in which sulfur is intentionally incorporated in fertilizers are as sulfates of calcium, ammonium, potassium, magnesium, and as elemental sulfur. Ammonium sulfate [7783-20-2] normal superphosphate, and sulfuric acid frequendy are incorporated in ammoniation granulation processes. Ammonium phosphate—sulfate is an excellent sulfur-containing fertilizer, and its production seems likely to grow. Some common grades of this product are 12—48—0—5S, 12—12S, and 8—32—8—6.5S. [Pg.242]

Generally, soluble materials are more effective as micronutrient sources than are insoluble ones. For this reason, many soil minerals that contain the micronutrient elements are ineffective sources for plants. Some principal micronutrient sources and uses are summarized below. In this discussion the term frits refers to a fused, pulverized siUceous material manufactured and marketed commercially for incorporation in fertilizers. Chelates refers to metaHoorganic complexes specially prepared and marketed as especially soluble, highly assimilable sources of micronutrient elements (see CHELATING agents). [Pg.242]

Resources for Potash Fertilizers. Potassium is the seventh most abundant element in the earth s cmst. The raw materials from which postash fertilizer is derived are principally bedded marine evaporite deposits, but other sources include surface and subsurface brines. Both underground and solution mining are used to recover evaporite deposits, and fractional crystallization (qv) is used for the brines. The potassium salts of marine evaporite deposits occur in beds in intervals of haUte [14762-51-7] NaCl, which also contains bedded anhydrite [7778-18-9], CaSO, and clay or shale. The K O content of such deposits varies widely (see Potassium compounds). [Pg.244]

Calcium. Calcium is the fifth most abundant element in the earth s cmst. There is no foreseeable lack of this resource as it is virtually unlimited. Primary sources of calcium are lime materials and gypsum, generally classified as soil amendments (see Calcium compounds). Among the more important calcium amendments are blast furnace slag, calcitic limestone, gypsum, hydrated lime, and precipitated lime. Fertilizers that carry calcium are calcium cyanamide, calcium nitrate, phosphate rock, and superphosphates. In addition, there are several organic carriers of calcium. Calcium is widely distributed in nature as calcium carbonate, chalk, marble, gypsum, fluorspar, phosphate rock, and other rocks and minerals. [Pg.245]

Because of its position in the Periodic Table, molybdenum has sometimes been linked to chromium (see Chromiumand chromium alloys) or to other heavy metals. However, unlike those elements, molybdenum and its compounds have relatively low toxicity, as shown in Table 3. On the other hand, molybdenum has been identified as a micronutrient essential to plant life (11,12) (see Fertilizers), and plays a principal biochemical role in animal health as a constituent of several important enzyme systems (see Mineral nutrients). [Pg.463]

Molybdenum, recognized as an essential trace element for plants, animals, and most bacteria, is present in a variety of metaHo enzymes (44—46). Indeed, the absence of Mo, and in particular its co-factor, in humans leads to severe debility or early death (47,48). Molybdenum in the diet has been impHcated as having a role in lowering the incidence of dental caries and in the prevention of certain cancers (49,50). To aid the growth of plants. Mo has been used as a fertilizer and as a coating for legume seeds (51,52) (see FERTILIZERS Mineral NUTRIENTS). [Pg.475]

Soil Nutrient. Molybdenum has been widely used to increase crop productivity in many soils woddwide (see Fertilizers). It is the heaviest element needed for plant productivity and stimulates both nitrogen fixation and nitrate reduction (51,52). The effects are particularly significant in leguminous crops, where symbiotic bacteria responsible for nitrogen fixation provide the principal nitrogen input to the plant. Molybdenum deficiency is usually more prominent in acidic soils, where Mo(VI) is less soluble and more easily reduced to insoluble, and hence unavailable, forms. Above pH 7, the soluble anionic, and hence available, molybdate ion is the principal species. [Pg.478]

The value of langbeinite as a fertilizer is enhanced because, in pure form, it contains 18.8 wt % potassium, 11.7 wt % magnesium, and 23.0 wt % sulfur. AH three elements are essential nutrients for plant growth. Commercial grades contain ca 97 wt % mineral the remaining 3 wt % consists of water-insoluble clays and residual sodium chloride. [Pg.531]

Devising an economical method of producing agricultural-grade potassium phosphates from potassium chloride and wet-process phosphoric acid has been the subject of intense agricultural—chemical research (37—39). Limited quantities have been produced industrially. The impact on the overall quantities of phosphoms and potassium compounds consumed by the fertilizer industry is small. Because potassium phosphates are an excellent source of two essential fertilizer elements, this research is expected to continue. [Pg.536]

Table 10. Global Ammonia Capacity and Fertilizer Nitrogen Consumption, 10 t of Elemental Nitrogen ... Table 10. Global Ammonia Capacity and Fertilizer Nitrogen Consumption, 10 t of Elemental Nitrogen ...
Sulfur [7704-34-9] S, a nonmetallic element, is the second element of Group 16 (VIA) of the Periodic Table, coming below oxygen and above selenium. In massive elemental form, sulfur is often referred to as brimstone. Sulfur is one of the most important taw materials of the chemical industry. It is of prime importance to the fertilizer industry (see Fertilizers) and its consumption is generally regarded as one of the best measures of a nation s industrial development and economic activity (see Sulfur compounds Sulfurremoval and recovery Sulfuric acid and sulfur trioxide). [Pg.115]

Sulfuric acid is the most important sulfur-containing intermediate product. More than 85% of the sulfur consumed in the world is either converted to sulfuric acid or produced direcdy as such (see Sulfuric acid and sulfur trioxide). Worldwide, well over half of the sulfuric acid is used in the manufacture of phosphatic fertilizers and ammonium sulfate for fertilizers. The sulfur source may be voluntary elemental, such as from the Frasch process recovered elemental from natural gas or petroleum or sulfur dioxide from smelter operations. [Pg.125]

The need for weU-trained technical service professionals is expected to continue as an essential aspect of the chemical industry, despite the phenomenal growth ia electronic methods of information storage, retrieval, and transmission. Advanced troubleshooting of complex customer processes and accelerated accurate product development and market introductions should continue to be principal elements of technical service personnel duties. Increased levels of integration, perhaps blurring the lines between suppHer and customer, may come to pass. There are already instances of personnel swapping between customers and suppHers for extended periods to allow cross-fertilization of ideas and provide more accurate perspectives for the companies involved in these efforts. Technical service and research personnel have been those persons most directly involved in such efforts. [Pg.381]


See other pages where Elements Fertilizer is mentioned: [Pg.132]    [Pg.178]    [Pg.8]    [Pg.181]    [Pg.272]    [Pg.132]    [Pg.178]    [Pg.8]    [Pg.181]    [Pg.272]    [Pg.30]    [Pg.249]    [Pg.277]    [Pg.378]    [Pg.2392]    [Pg.18]    [Pg.212]    [Pg.213]    [Pg.213]    [Pg.213]    [Pg.213]    [Pg.214]    [Pg.216]    [Pg.224]    [Pg.233]    [Pg.242]    [Pg.242]    [Pg.32]    [Pg.32]    [Pg.177]    [Pg.469]    [Pg.530]    [Pg.335]    [Pg.358]    [Pg.120]    [Pg.201]   
See also in sourсe #XX -- [ Pg.276 , Pg.285 ]




SEARCH



© 2024 chempedia.info