Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Elemental analysis measurement

Dulski. T.R. Residual-Element Analysis Measuring the Minuscule. Advanced Materi/ds Processes, 20 (February 1992). [Pg.1094]

Plasma AES has several advantages (possibility for the qualitative and simultaneous multi-element analysis, measurements in the vacuum UV region, high sensitivity, low detection limits, less chemical interferences, low running costs) and it has become more and more important for the determination of traces in a great variety of samples. On the other hand, it does not compensate totally for any other instrumental method of analysis, but it compensates for those faults which might exist in other techniques. The complementary nature of plasma AES and AAS capabilities for trace elemental analysis is an important feature of these techniques. Plasma AES exhibits excellent power of detection for a number of elements which cannot be determined or are difficult to determine at trace levels by flame AAS e.g. B, P, S, W, U, Zr, La, V, Ti) or by electrothermal AAS (B, S, W, U). Thus, optical plasma emission and atomic absorption are not actually alternatives, but in an ideal way complement one another. [Pg.7]

With the Gd-derivative as an example it has been established [26], that the green form can transform into the blue and back ones under the influence of solvent and other factors. The elemental analysis, measurements of magnetic susceptibility and EPR spectra have indicated that the green complex as well as the blue one appears to be a diphthalocyanine. The authors [26] have concluded that the colour reverse is caused by the acid-alkali equilibrium... [Pg.489]

Perhaps the most common type of problem encountered in the analytical lab is a quantitative analysis. Examples of typical quantitative analyses include the elemental analysis of a newly synthesized compound, measuring the concentration of glucose in blood, or determining the difference between the bulk and surface concentrations of Cr in steel. Much of the analytical work in clinical, pharmaceutical, environmental, and industrial labs involves developing new methods for determining the concentration of targeted species in complex samples. Most of the examples in this text come from the area of quantitative analysis. [Pg.9]

Gases and vapors of volatile liquids can be introduced directly into a plasma flame for elemental analysis or for isotope ratio measurements. Some elements can be examined by first converting them chemically into volatile forms, as with the formation of hydrides of arsenic and tellurium. It is important that not too much analyte pass into the flame, as the extra material introduced into the plasma can cause it to become unstable or even to go out altogether, thereby compromising accuracy or continuity of measurement. [Pg.102]

The copolymer composition equation relates the r s to either the ratio [Eq. (7.15)] or the mole fraction [Eq. (7.18)] of the monomers in the feedstock and repeat units in the copolymer. To use this equation to evaluate rj and V2, the composition of a copolymer resulting from a feedstock of known composition must be measured. The composition of the feedstock itself must be known also, but we assume this poses no problems. The copolymer specimen must be obtained by proper sampling procedures, and purified of extraneous materials. Remember that monomers, initiators, and possibly solvents are involved in these reactions also, even though we have been focusing attention on the copolymer alone. The proportions of the two kinds of repeat unit in the copolymer is then determined by either chemical or physical methods. Elemental analysis has been the chemical method most widely used, although analysis for functional groups is also employed. [Pg.457]

Trace-element analysis of metals can give indications of the geographic provenance of the material. Both emission spectroscopy (84) and activation analysis (85) have been used for this purpose. Another tool in provenance studies is the measurement of relative abundances of the lead isotopes (86,87). This technique is not restricted to metals, but can be used on any material that contains lead. Finally, for an object cast around a ceramic core, a sample of the core material can be used for thermoluminescence dating. [Pg.421]

The most commonly measured pigment properties ate elemental analysis, impurity content, crystal stmcture, particle size and shape, particle size distribution, density, and surface area. These parameters are measured so that pigments producers can better control production, and set up meaningful physical and chemical pigments specifications. Measurements of these properties ate not specific only to pigments. The techniques appHed are commonly used to characterize powders and soHd materials and the measutiag methods have been standardized ia various iadustries. [Pg.4]

Electron Probe X-Ray Microanalysis (EPMA) is a spatially resolved, quantitative elemental analysis technique based on the generation of characteristic X rays by a focused beam of energetic electrons. EPMA is used to measure the concentrations of elements (beryllium to the actinides) at levels as low as 100 parts per million (ppm) and to determine lateral distributions by mapping. The modern EPMA instrument consists of several key components ... [Pg.175]

X-Ray Fluorescence (XRF) is a nondestructive method used for elemental analysis of materials. An X-ray source is used to irradiate the specimen and to cause the elements in the specimen to emit (or fluoresce) their characteristic X rays. A detector s)rstem is used to measure the positions of the fluorescent X-ray peaks for qualitative identiflcation of the elements present, and to measure the intensities of the peaks for quantitative determination of the composition. All elements but low-Z elements—H, He, and Li—can be routinely analyzed by XRF. [Pg.338]

The polymers initiated by BP amines were found to contain about one amino end group per molecular chain. It is reasonable to consider that the combination of BP and such polymers will initiate further polymerization of vinyl monomers. We investigated the photopolymerization of MMA with BP-PMMA bearing an anilino end group as the initiation system and found an increase of the molecular weight from GPC and viscometrical measurement [91]. This system can also initiate the photopolymerization of AN to form a block copolymer, which was characterized by GPC, elemental analysis, and IR spectra. The mechanism proposed is as follows ... [Pg.240]

The small amount of available crystalline abscisin II limited this investigation to the measurement and interpretation of elemental analysis, mass spectrum, and infrared, ultraviolet, and nuclear magnetic resonance (NMR) spectra (11). [Pg.105]

Azides 2a-g were characterized by their elemental analysis, IR, IR and 13c NMR spectra (including INAPT measurements to support the assignations of 13c NMR spectra) and MS data. [Pg.176]

It is widely accepted that to measure the true hardness of the Elms, the indentation depth should not exceed 10 % of the film thickness. Based on a finite element analysis, Bhat-tacharya [70] and Bhushan [71] conclude that the true hardness of the films can be obtained if the indentation depth does not exceed about 3 0 % of the film thickness. [Pg.24]

Figure 10.6 gives a schemahc view of the test setup of the strain measurement. The boundary conditions in this stretched him method are modeled by hnite element analysis with nonlinear material properties. [Pg.284]

The above problems of fabrication and performance present a challenging task of identification of the governing material mechanisms. Use of nonlinear finite element analysis enables close simulation of actual thermal and mechanical loading conditions when combined with measurable geometrical and material parameters. As we continue to investigate real phenomena, we need to incorporate non-linearities in behavior into carefully refined models in order to achieve useful descriptions of structural responses. [Pg.130]

One point, which is often disregarded when nsing AFM, is that accurate cantilever stiffness calibration is essential, in order to calculate accurate pull-off forces from measured displacements. Althongh many researchers take values quoted by cantilever manufacturers, which are usually calculated from approximate dimensions, more accurate methods include direct measurement with known springs [31], thermal resonant frequency curve fitting [32], temporary addition of known masses [33], and finite element analysis [34]. [Pg.30]

The TEM images of 12 wt.% Co/MgO calcined at 873 K (Catalyst I) before and after reduction are shown in Fig. 1 (a) and (b), respectively. Although Co metal phase was detected in reduced Co/MgO by X-ray diffraction measurements (XRD) [7, 8], no Co metal particle was observed on both catalysts. EDS elemental analysis showed that primary particles contain both Mg and Co elements, whose concentrations were about the same as loaded amounts. Figure 2 shows TEM image of 12 wt.% Co/MgO calcined at 1173 K (Catalyst II). [Pg.518]

We are asked to compare an elemental analysis with a chemical formula. To do so, we can either convert mass percentages to mole amounts or convert the formula to mass percentages. It is easier to compute mass percentages and compare them with the measured values. [Pg.156]

Within the precision of the measured elemental analysis, the experimental percentages are the same as those expected for Cg Hig N4 O2. Thus, the data are consistent with caffeine. [Pg.157]

Comparative studies of the widely employed spectrophotometric readings at the Soret and Q bands (405 and 630 nm, respectively) and the elemental analysis of copper and nitrogen showed that the spectrophotometric assay based only on the Soret band can overestimate the purity of a preparation. Erroneous data were attributed to an increase in absorptivity at the Soret band when other colored compounds like metal-free analogs and carotenoids are present. Indeed, copper-free chlorin e6 exhibits a specific absorbance 3.6 times greater than that of its coppered counterpart. Therefore, measurements at the Q band (630 mn) and the establishment of the S Q ratio are preferred. [Pg.442]

This paper describes the successful incorporation of molybdenum and molybdenum-nickel clusters into zeolites with 12-membered ring by aqueous ion exchange and application of the resulting materials to HDS reaction of benzothiophene. Stoichiometry of the ion exchange was examined by elemental analysis. UV-visible spectroscopy and EXAFS measurements were carried out to investigate the structure of molybdenum species loaded on zeolites. [Pg.108]


See other pages where Elemental analysis measurement is mentioned: [Pg.228]    [Pg.228]    [Pg.85]    [Pg.228]    [Pg.228]    [Pg.85]    [Pg.1324]    [Pg.276]    [Pg.427]    [Pg.332]    [Pg.11]    [Pg.368]    [Pg.233]    [Pg.439]    [Pg.15]    [Pg.22]    [Pg.138]    [Pg.301]    [Pg.617]    [Pg.634]    [Pg.6]    [Pg.133]    [Pg.510]    [Pg.236]    [Pg.143]    [Pg.367]    [Pg.381]    [Pg.47]    [Pg.389]    [Pg.158]    [Pg.160]    [Pg.31]   


SEARCH



Element Measuring

Elemental analyses, spectral nuclear measurement

© 2024 chempedia.info