Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acids and Alkalis

The first large chemical industries that developed in modern times involved the production of acids and alkalis. The most important industrial chemical used throughout history is sulfuric acid. Each year sulfuric acid tops the list of chemicals used by industry, and it is often said that a country s economic status can be gauged by the amount of sulfuric acid it consumes in a year. In ancient times sulfuric acid was produced by heating the ore green vitiriol, FeSO -mp-. [Pg.290]

While the lead-chamber process increased the amount of sulfuric acid that could be produced, it relied on a source of nitrate that usually had to be imported. The process also produced nitric oxide gas, NO, which oxidized to brown nitrogen dioxide in the atmosphere. To reduce the supply of nitrate required and the amount of nitric oxide produced, Gay-Lussac proposed that the nitric oxide be captured in a tower and recycled into the lead chamber. Although Gay-Lussac first proposed this modification to the lead-chamber method around 1830, it was not until the 1860s that John Glover (1801-1872) actually implemented Gay-Lussac s idea with the Glover tower. [Pg.290]

The lead-chamber process supplied the world s need for sulfuric acid for a century and a half. In the late nineteenth century, the contact process replaced the lead-chamber process. The contact process utilized sulfur dioxide, SOj, which was produced as a byproduct when sulfur-bearing ores were smelted. The contact process was named because the conversion of sulfur dioxide to sulfur trioxide, SO3, takes place on contact with a vanadium or platinum catalyst during the series of reactions  [Pg.290]

Sodium carbonate, Na2C03, and potassium carbonate (potash), K2CO3, were two [Pg.290]

LeBlanc s method were made by several other chemists, and he never received the reward. LeBlanc, disheartened and destitute, committed suicide in 1806. [Pg.291]


Hydrolysed by dilute acids and alkalis to aniline. It chlorinates more slowly than aniline to o-and p-chloroacetanilides. [Pg.10]

Prepared by the dehydration of benzamide. Hydrolysed by dilute acids and alkalis to benzoic acid. Good solvent. benzopheDone,C]3HioO,PhC(0)Ph. Colourless rhombic prisms, m.p. 49 C, b.p. 306°C. Characteristic smell. It is prepared by the action of benzoyl chloride upon benzene in the presence of aluminium chloride (Friedel-Crafts reaction) or by the oxidation of di-phenylmethane. It is much used in perfumery. Forms a kelyl with sodium. [Pg.57]

Fats are hydrolysed to glycerol and fatty acids by boiling with acids and alkalis, by superheated steam and by the action of lipases. If alkalis are used for hydrolysis, the fatty acids combine with the alkalis to form soaps. Alkaline hydrolysis is therefore sometimes called saponification. [Pg.172]

Colourless needles m.p. 14rC, b.p. 290"C. Slowly hydrolysed to phthalic acid by dilute acids and alkalis. [Pg.313]

CfiHsNjOs. Red needles m.p. 168-169°C. Soluble in dilute acids and alkalis. Prepared by reduction of picric acid with sodium hydrogen sulphide, ft is used for the preparation of azodyes, which can be after-chromed by treatment with metallic salts owing to the presence of a hydroxyl group ortho to the amino-group. [Pg.313]

Glutelins. Also insoluble in water and in 7% aqueous ethanol. Soluble in acids and alkalis. Also found in cereals. [Pg.332]

Aluminium oxide is a white solid, insoluble in water, with a very high melting point. If heated above red heat, it becomes insoluble in acids and alkalis, and can only be brought into solution by first fusing it with sodium or potassium hydroxide when an aluminate is formed. [Pg.150]

On standing, gelatinous aluminium hydroxide, which may initially have even more water occluded than indicated above, is converted into a form insoluble in both acids and alkalis, which is probably a hydrated form of the oxide AI2O3. Both forms, however, have strong adsorptive power and will adsorb dyes, a property long used by the textile trade to dye rayon. The cloth is first impregnated with an aluminium salt (for example sulphate or acetate) when addition of a little alkali, such as sodium carbonate, causes aluminium hydroxide to deposit in the pores of the material. The presence of this aluminium hydroxide in the cloth helps the dye to bite by ad sorbing it—hence the name mordant (Latin mordere = to bite) dye process. [Pg.151]

Reactor-grade zirconium is essentially free of hafnium. Zircaloy(R) is an important alloy developed specifically for nuclear applications. Zirconium is exceptionally resistant to corrosion by many common acids and alkalis, by sea water, and by other agents. Alloyed with zinc, zirconium becomes magnetic at temperatures below 35oK. [Pg.56]

Lead Carbonate. Lead carbonate [598-63-0] PbCO, mol wt 267.22, d = 6.6g/cm, forms colorless orthorhombic crystals it decomposes at about 315°C. It is nearly insoluble in cold water (0.00011 g/100 mL at 20°C), but is transformed in hot water to the basic carbonate, 2PbC03 Pb(OH)2. Lead carbonate is soluble in acids and alkalies, but insoluble in alcohol and ammonia. It is prepared by passing CO2 iuto a cold dilute solution of lead acetate, or by shaking a suspension of a lead salt less soluble than the carbonate with ammonium carbonate at a low temperature to avoid formation of basic lead carbonate. [Pg.71]

Tantalum Oxides. Tantalum pentoxide [1314-61 -0] Ta20, (mp = 1880°C, density = 8.73 g/cm ) is a white powder existing in two thermodynamically stable modifications. The orthorombic P-phase changes at 1360°C into the tetragonal a-modiftcation. The existence of an S-modiftcation has also been reported (70). Tantalum pentoxide reacts slowly with hot hydrofluoric acid but is insoluble in water and in most solutions of acids and alkalies. For analytical purposes, it can be dissolved by fusion with alkali hydroxides, alkali carbonates, and potassium pyrosulfate. [Pg.332]

The reactivity of the amino groups at the pteridine nucleus depends very much upon their position. All amino groups form part of amidine or guanidine systems and therefore do not behave like benzenoid amino functions which can usually be diazotized. The 4-, 6-and 7-amino groups are in general subject to hydrolysis by acid and alkali, whereas the 2-amino group is more stable under these conditions but is often more susceptible to removal by nitrous acid. [Pg.293]

When hydroxypteridines are considered, it must be borne in mind that these compounds exist principally in the pteridinone forms, containing thermodynamically stable amide functions, and consequently have low reactivity. Their stability towards acid and alkali correlates well with the number of electron-donating groups which apparently redress the deficit of ir-electrons located at the ring nitrogen atoms. Quantitative correlations can be seen in the decomposition studies of various pteridinones (Table 7). These results are consistent with the number of the oxy functions and their site at the pteridine nucleus. The... [Pg.295]

A few collections of more generic information as to the overall acid and alkali resistance of broad classes of materials remain. These are only intended to be used as indicators of the tendencies of these MOC to react they are not included as a substitute for the application of good, sound engineering evaluations. [Pg.2442]

The most chemical-resistant plastic commercially available today is tetrafluoroethylene or TFE (Teflon). This thermoplastic is practically unaffected by all alkahes and acids except fluorine and chlorine gas at elevated temperatures and molten metals. It retains its properties up to 260°C (500°F). Chlorotrifluoroethylene or CTFE (Kel-F, Plaskon) also possesses excellent corrosion resistance to almost all acids and alkalies up to 180°C (350°F). A Teflon derivative has been developed from the copolymerization of tetrafluoroethylene and hexafluoropropylene. This resin, FEP, has similar properties to TFE except that it is not recommended for continuous exposures at temperatures above 200°C (400°F). Also, FEP can be extruded on conventional extrusion equipment, while TFE parts must be made by comphcated powder-metallurgy techniques. Another version is poly-vinylidene fluoride, or PVF2 (Kynar), which has excellent resistance to alkahes and acids to 150°C (300°F). It can be extruded. A more recent development is a copolymer of CTFE and ethylene (Halar). This material has excellent resistance to strong inorganic acids, bases, and salts up to 150°C. It also can be extruded. [Pg.2457]

Cellulose acetate butyrate is not affected by dilute acids and alkalies or gasoline, but chlorinated solvents cause some swelhng. Nylons resist many organic solvents but are attacked by phenols, strong oxidizing agents, and mineral acids. [Pg.2458]

Wood While fairly inert chemically, wood is readily dehydrated by concentrated solutions and hence shrinks badly when subjected to the action of such solutions. It is also slowly hydrolvzed by acids and alkalies, especially when hot. In tank construction, if sufficient shrinkage once takes place to allow ctystals to form between the staves, it becomes very difficult to make the tank tight again. [Pg.2464]

Vinyl 212 Good compressibility, resiheucy. Resistant to water, oils, gasoline, and many acids and alkalies. Relatively narrow temperature range. [Pg.2474]

Monel 1500 High corrosion resistance. Good against most acids and alkalies, but attacked by strong hydrochloric and strong oxidizing acids. [Pg.2474]

Special insulation and coating of stator windings and overhangs are sometimes essential to ensure protection against tropical weather, fungus growth, moisture, oil abrasives, and acid and alkali fumes. Powerhouse treatment is one insulating process that ctin meet all these requirements (see Section 9..T). [Pg.183]

Vinylidene chloride-vinyl chloride polymers are also self-extinguishing and possess very good resistance to a wide range of chemicals, including acids and alkalis. They are dissolved by some cyclic ethers and ketones. [Pg.468]

The commercial polymers are generally resistant to aqueous acids and alkalis although they are attacked by concentrated sulphuric acid. As might be expected of a highly polar polymer it is not dissolved by aliphatic hydrocarbons but solvents include dimethyl formamide and dimethyl acetamide. [Pg.600]

The solubility parameter is about 19.2MPa and being amorphous they dissolve in such solvents as tetrahydrofuran, mesityl oxide, diacetone alcohol and dioxane. Since the main chain is composed of stable C—C and C—O—C linkages the polymer is relatively stable to chemical attack, particularly from acids and alkalis. As already mentioned, the pendant hydroxyl groups are reactive and provide a site for cross-linking. [Pg.607]

The resins are resistant to aqueous solutions of acids and alkalis and have a wide range of resistance to solvents. Amongst suitable solvents are methylene dichloride, dimethylformamide and phenol. The films bond well to poly-esterimide resins. [Pg.610]

The chemical resistance of celluloid is not particularly good. It is affected by acids and alkalis, discolours on exposure to sunlight and tends to harden on aging. More seriously it is extremely inflammable, this being by far the greatest limitation of the material. [Pg.619]

Since both Si—O and Si—CHj bonds are thermally stable it is predictable that the polydimethylsiloxanes (dimethylsilicones) will have good thermal stability and this is found to be the case. On the other hand since the Si—O bond is partially ionic (51%) it is relatively easily broken by concentrated acids and alkalis at room temperature. [Pg.823]

The fluids have reasonably good chemical resistance but are attacked by concentrated mineral acids and alkalis. They are soluble in aliphatic, aromatic and chlorinated hydrocarbons, which is to be expected from the low solubility parameter of 14.9 MPa. They are insoluble in solvents of higher solubility parameter such as acetone, ethylene glycol and water. They are themselves very poor solvents. Some physical properties of the dimethylsilicone fluids are summarised in Table 29.2. [Pg.825]

Both acids and alkalis will adversely affect the material. Strong alkalis and acids will cause decomposition. The water absorption is high and consequently casein is easily stained. As a corollary to this it may be dyed without difficulty. Acidic and basic water-soluble dyes are normally used. Typical properties of casein plastics are given in Table 30.2. [Pg.859]

Both acids and alkalis are electrolytes. The latter when fused or dissolved in water conduct an electric current (see page 55). Acids are considered to embrace substances capable of accepting an electron pair. Mineral acids have wide usage as indicated by Table 3.4. [Pg.27]

Esterification. The esterification of rosin provides important commercial products for the adhesive industry. Rosin esters are formed by the reaction of rosins with alcohols at elevated temperatures. Because the carboxyl group of the resin acids is hindered by attachment to a tertiary carbon, esterification with an alcohol can only be accomplished at elevated temperatures. This hindrance is in turn responsible for the high resistance of the resin acid ester linkage to cleavage by water, acid and alkali. [Pg.602]

NBR adhesives can be used at temperatures between 170°C and —40°C. Bond strength can run above 7 MPa and can provide structural bond to many substrates. Even without curing, NBR adhesives show excellent resistance to organic compounds, acids and alkalis. [Pg.658]

Charcoal is not only employed in activated form for decoloring and adsorbing dissolved admixtures but also in its unactivated form as a filter aid. It can be used in suspensions consisting of aggressive liquids (e.g., strong acids and alkalies). As with sawdust, it can be used to separate solids that may be roasted. On combustion, the charcoal leaves a residue of roughly 2 percent ash. Particles of charcoal are porous and form cakes of high density but that have a lesser retention ability than does diatomite. [Pg.115]


See other pages where Acids and Alkalis is mentioned: [Pg.25]    [Pg.185]    [Pg.196]    [Pg.334]    [Pg.231]    [Pg.247]    [Pg.271]    [Pg.69]    [Pg.227]    [Pg.278]    [Pg.463]    [Pg.77]    [Pg.390]    [Pg.390]    [Pg.390]    [Pg.292]    [Pg.128]    [Pg.354]    [Pg.137]   


SEARCH



Alkali and Alkaline Earth Salts of Azidodithiocarbonic Acid

Fast Chemical Reactions in a Single-phase Reaction Mixture (Neutralisation of Acid and Alkali Media)

Reaction with Halogens, Acids, and Alkalis

Reactions with acids and alkalis

Surface tension in acids and alkali

Water, Soap, Alkali, and Acids

© 2024 chempedia.info