Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Must Composition

Quality level Minimum alcohol content Zone a Zone B  [Pg.915]

Vine growing areas Germany without Baden (Zone A), Baden (Zone B). [Pg.915]

The major acids of must are L-tartaric and L-malic acids. Succinic, citric and some other acids are minor constituents. In a good vintage, tartaric acid is 65-70% of the titratable acidity, but in years when unripe grapes are fermented, its content is only 35-40% and malic acid predominates. The good vintage year of 1911, for example, yielded grapes with 3.1 g/1 malic acid and 6.4 g/1 tartaric acid in the inferior vintage year of 1912, on the other hand, malic acid was 10.7 g/1 and tartaric acid 6.0 g/1. [Pg.915]

Since the density of the must is primarily dependent on the sugar content c, it can be estimated using the following equation  [Pg.915]

Ripe grapes contain equal amounts of glucose and fructose, while fructose predominates in overripe or botrytised berries. [Pg.915]


The anaerobic fermentation of sugars by Saccharomyces wine yeasts generates a variety of volatile metabolites that contribute to the sensory profile of wine. The important compounds include esters, higher alcohols, volatile fatty acids, carbonyls, and volatile sulfur compounds. The accumulation of these compounds in wine depends on the strain of yeast, must composition (chemical, physical and nutrient composition) and fermentation conditions. In addition, a variety of... [Pg.327]

Rigaud, J., Cheynier, V, Souquet, J. M., Moutounet, M. (1991). Influence of must composition on phenolic oxidation kinetics. J. Sci. Food Agric., 57, 55-63. [Pg.525]

With regards to fusel alcohol production, Kunkee and Goswell (5) noted that while yeast strain appeared to have an effect on fusel alcohol production, other factors, notably must composition, appeared to have equally important influences. For example. Berry and Watson (29) reported that added nitrogen and carbohydrates can stimulate higher alcohol production, as can increased pH (59). Various processing parameters can also affect fusel alcohol production, including agitation, aeration, and temperature (29,59). [Pg.74]

Hydrogen sulfide production is highly correlated to must composition (29). Lack of pantothenate or zinc stimulates hydrogen sulfide production, as does an excess of iron or copper (29) as free amino nitrogen decreases, hydrogen sulfide production may increase (61). [Pg.75]

It is possible in any given study to demonstrate differences among yeast strains however, these results are likely confounded with the must composition and subsequent fermentation conditions specific to that study. Since the extrinsic factors can have a far greater effect on volatile profiles than does the inoculum it is all too easy to reach erroneous conclusions regarding strain effects. [Pg.77]

To avoid the difficulty of precisely defining grape must composition, Henschke and Jiranek (1992) carried out their experiments using a well-known medium model. Their results have given researchers a new understanding of this subject. [Pg.86]

The fermentation speed, which depends on must composition (nitrogen-based substances) and yeast inoculation conditions. Operations such as aeration, chaptalization and inoculation will increase the fermentation speed, limit the dissipation of calories and increase the maximum temperature. Reciprocally, not crushing the red harvest in carbonic maceration (Section 12.9.1) will slow fermentation kinetics and lower the maximum temperature. [Pg.99]

The fnngistatic concentration, which hinders fermentation in grape must, varies according to must composition (in particular pH), the size of the inoculum and the nature of the strain. The concentration limits cited in the literature are between 100 and 1000 mg/1, with an average value of 300-500 mg/1. [Pg.225]

Table 13.2. Average Sauvignon and Semilion must composition at harvest in representative parcels in Graves-classed growth (Bordeaux)... Table 13.2. Average Sauvignon and Semilion must composition at harvest in representative parcels in Graves-classed growth (Bordeaux)...
Figure 11A Must composition and harvesting period under temperate climate conditions of Brazilian hybrid gr >evine cultivars exhibiting labrusca or stawberry flavour. The berries from the cultivars are considered dual purpose, i.e. wine- and juice-making. It is noteworthy that novel cultivars exhibit an extension of approximately 40 days in the harvesting period under temperate conditions, in comparison to the harvesting period of traditional cultivars (Isabella, Concord and Bordd/Ives). The extended harvesting allows better distribution of the labour force and facility resources in the vineyard and winery (Ritschel et al., 2012). Figure 11A Must composition and harvesting period under temperate climate conditions of Brazilian hybrid gr >evine cultivars exhibiting labrusca or stawberry flavour. The berries from the cultivars are considered dual purpose, i.e. wine- and juice-making. It is noteworthy that novel cultivars exhibit an extension of approximately 40 days in the harvesting period under temperate conditions, in comparison to the harvesting period of traditional cultivars (Isabella, Concord and Bordd/Ives). The extended harvesting allows better distribution of the labour force and facility resources in the vineyard and winery (Ritschel et al., 2012).
In vapor-liquid equilibria, it is relatively easy to start the iteration because assumption of ideal behavior (Raoult s law) provides a reasonable zeroth approximation. By contrast, there is no obvious corresponding method to start the iteration calculation for liquid-liquid equilibria. Further, when two liquid phases are present, we must calculate for each component activity coefficients in two phases since these are often strongly nonlinear functions of compositions, liquid-liquid equilibrium calculations are highly sensitive to small changes in composition. In vapor-liquid equilibria at modest pressures, this sensitivity is lower because vapor-phase fugacity coefficients are usually close to unity and only weak functions of composition. For liquid-liquid equilibria, it is therefore more difficult to construct a numerical iteration procedure that converges both rapidly and consistently. [Pg.4]

If we vary the composition of a liquid mixture over all possible composition values at constant temperature, the equilibrium pressure does not remain constant. Therefore, if integrated forms of the Gibbs-Duhem equation [Equation (16)] are used to correlate isothermal activity coefficient data, it is necessary that all activity coefficients be evaluated at the same pressure. Unfortunately, however, experimentally obtained isothermal activity coefficients are not all at the same pressure and therefore they must be corrected from the experimental total pressure P to the same (arbitrary) reference pressure designated P. This may be done by the rigorous thermodynamic relation at constant temperature and composition ... [Pg.20]

The equilibrium ratios are not fixed in a separation calculation and, even for an isothermal system, they are functions of the phase compositions. Further, the enthalpy balance. Equation (7-3), must be simultaneously satisfied and, unless specified, the flash temperature simultaneously determined. [Pg.114]

It is important to stress that unnecessary thermodynamic function evaluations must be avoided in equilibrium separation calculations. Thus, for example, in an adiabatic vapor-liquid flash, no attempt should be made iteratively to correct compositions (and K s) at current estimates of T and a before proceeding with the Newton-Raphson iteration. Similarly, in liquid-liquid separations, iterations on phase compositions at the current estimate of phase ratio (a)r or at some estimate of the conjugate phase composition, are almost always counterproductive. Each thermodynamic function evaluation (set of K ) should be used to improve estimates of all variables in the system. [Pg.118]

THE SUBROUTINE ACCEPTS BOTH A LIQUID FEED OF COMPOSITION XF AT TEMPERATURE TL(K) AND A VAPOR FEED OF COMPOSITION YF AT TVVAPOR FRACTION OF THE FEED BEING VF (MOL BASIS). FDR AN ISOTHERMAL FLASH THE TEMPERATURE T(K) MUST ALSO BE SUPPLIED. THE SUBROUTINE DETERMINES THE V/F RATIO A, THE LIQUID AND VAPOR PHASE COMPOSITIONS X ANO Y, AND FOR AN ADIABATIC FLASHf THE TEMPERATURE T(K). THE EQUILIBRIUM RATIOS K ARE ALSO PROVIDED. IT NORMALLY RETURNS ERF=0 BUT IF COMPONENT COMBINATIONS LACKING DATA ARE INVOLVED IT RETURNS ERF=lf ANO IF NO SOLUTION IS FOUND IT RETURNS ERF -2. FOR FLASH T.LT.TB OR T.GT.TD FLASH RETURNS ERF=3 OR 4 RESPECTIVELY, AND FOR BAD INPUT DATA IT RETURNS ERF=5. [Pg.322]

Where the cold composite curve extends beyond the start of the hot composite curve in Fig. 6.5a, heat recovery is not possible, and the cold composite curve must be supplied with an external hot utility such as steam. This represents the target for hot utility (Q niin)- For this problem, with ATn,in = 10°C, Qnmin 7.5 MW. Where the hot composite curve extends beyond the start of the cold composite curve in Fig. 6.5a, heat recovery is again not possible, and the hot composite curve must be supplied with an external cold utility such as cooling water. This represents the target for cold utility (Qcmin)- For this problem, with AT in = 10°C, Qcmm = 10-0 MW. [Pg.165]

Specifying the hot utility or cold utility or AT m fixes the relative position of the two curves. As with the simple problem in Fig. 6.2, the relative position of the two curves is a degree of freedom at our disposal. Again, the relative position of the two curves can be changed by moving them horizontally relative to each other. Clearly, to consider heat recovery from hot streams into cold, the hot composite must be in a position such that everywhere it is above the cold composite for feasible heat transfer. Thereafter, the relative position of the curves can be chosen. Figure 6.56 shows the curves set to ATn,in = 20°C. The hot and cold utility targets are now increased to 11.5 and 14 MW, respectively. [Pg.165]

In other words, to achieve the energy target set by the composite curves, the designer must not transfer heat across the pinch by... [Pg.169]

Solution First, we must construct the balanced composite curves using the complete set of data from Table 7.1. Figure 7.5 shows the balanced composite curves. Note that the steam has been incorporated within the construction of the hot composite curve to maintain the monotonic nature of composite curves. The same is true of the cooling water in the cold composite curve. Figure 7.5 also shows the curves divided into enthalpy intervals where there is either a... [Pg.220]

In Fig. 13.7d, the grand composite curve for the reactor and that for the rest of the process are superimposed. To obtain maximum overlap, one of the curves must be taken as a mirror image. It can be seen in Fig. 13.7d that the reactor is appropriately placed relative to the rest of the process. Had the reactor not been appropriately placed, it would have been extremely... [Pg.335]

Let us now consider a few examples for the use of this simple representation. A grand composite curve is shown in Fig. 14.2. The distillation column reboiler and condenser duties are shown separately and are matched against it. Neither of the distillation columns in Fig. 14.2 fits. The column in Fig. 14.2a is clearly across the pinch. The distillation column in Fig. 14.26 does not fit, despite the fact that both reboiler and condenser temperatures are above the pinch. Strictly speaking, it is not appropriately placed, and yet some energy can be saved. By contrast, the distillation shown in Fig. 14.3a fits. The reboiler duty can be supplied by the hot utility. The condenser duty must be integrated with the rest of the process. Another example is shown in Fig. 14.36. This distillation also fits. The reboiler duty must be supplied by integration with the process. Part of the condenser duty must be integrated, but the remainder of the condenser duty can be rejected to the cold utility. [Pg.344]

Having decided that no exchanger should have a temperature difference smaller than ATmi, two rules were deduced. If the energy target set by the composite curves (or the problem table algorithm) is to be achieved, there must be no heat transfer across the pinch by... [Pg.364]

Equation (F.l) shows that each stream makes a contribution to total heat transfer area defined only by its duty, position in the composite curves, and its h value. This contribution to area means also a contribution to capital cost. If, for example, a corrosive stream requires special materials of construction, it will have a greater contribution to capital cost than a similar noncorrosive stream. If only one cost law is to be used for a network comprising mixed materials of construction, the area contribution of streams requiring special materials must somehow increase. One way this may be done is by weighting the heat transfer coefficients to reflect the cost of the material the stream requires. [Pg.447]

The properties required by jet engines are linked to the combustion process particular to aviation engines. They must have an excellent cold behavior down to -50°C, a chemical composition which results in a low radiation flame that avoids carbon deposition on the walls, a low level of contaminants such as sediment, water and gums, in order to avoid problems during the airport storage and handling phase. [Pg.178]

Composite transducers will replace conventional transducers in applications where the improvement of test sensitivity, signal to noise ratio and axial resolution are mandatory. It must nevertheless also be noted in connection with the broadband feature that though composite probes have a specified nominal frequency, the echo signals allow no echo amplitude... [Pg.711]

For calculation of the volumetric flow rate only the cross section area of the pipe is to be known. In order to give flow under standard conditions the temperature and pressure must be measured, and for conversion to mass flow the composition or density of the gas must be determined. These process parameters are often monitored by calibrated instrumentation. [Pg.1054]

It must be kept in mind that both pictures are modelistic and invoke extrather-modynamic concepts. Except mathematically, there is no such thing as a two-dimensional gas, and the solution whose osmotic pressure is calculated is not uniform in composition, and its average concentration depends on the depth assumed for the surface layer. [Pg.82]

Classic nucleation theory must be modified for nucleation near a critical point. Observed supercooling and superheating far exceeds that predicted by conventional theory and McGraw and Reiss [36] pointed out that if a usually neglected excluded volume term is retained the free energy of the critical nucleus increases considerably. As noted by Derjaguin [37], a similar problem occurs in the theory of cavitation. In binary systems the composition of the nuclei will differ from that of the bulk... [Pg.335]

Equation XI-27 shows that F can be viewed as related to the difference between the individual adsorption isotherms of components 1 and 2. Figure XI-9 [140] shows the composite isotherms resulting from various combinations of individual ones. Note in particular Fig. XI-9a, which shows that even in the absence of adsorption of component 1, that of component 2 must go through a maximum (due to the N[ factor in Eq. XI-27), and that in all other cases the apparent adsorption of component 2 will be negative in concentrated solution. [Pg.407]

An important industrial example of W/O emulsions arises in water-in-crude-oil emulsions that form during production. These emulsions must be broken to aid transportation and refining [43]. These suspensions have been extensively studied by Sjoblom and co-workers [10, 13, 14] and Wasan and co-workers [44]. Stabilization arises from combinations of surface-active components, asphaltenes, polymers, and particles the composition depends on the source of the crude oil. Certain copolymers can mimic the emulsion stabilizing fractions of crude oil and have been studied in terms of their pressure-area behavior [45]. [Pg.508]

The apparent activation energy is then less than the actual one for the surface reaction per se by the heat of adsorption. Most of the algebraic forms cited are complicated by having a composite denominator, itself temperature dependent, which must be allowed for in obtaining k from the experimental data. However, Eq. XVIII-47 would apply directly to the low-pressure limiting form of Eq. XVIII-38. Another limiting form of interest results if one product dominates the adsorption so that the rate law becomes... [Pg.726]

Electrons, protons and neutrons and all other particles that have s = are known as fennions. Other particles are restricted to s = 0 or 1 and are known as bosons. There are thus profound differences in the quantum-mechanical properties of fennions and bosons, which have important implications in fields ranging from statistical mechanics to spectroscopic selection mles. It can be shown that the spin quantum number S associated with an even number of fennions must be integral, while that for an odd number of them must be half-integral. The resulting composite particles behave collectively like bosons and fennions, respectively, so the wavefunction synnnetry properties associated with bosons can be relevant in chemical physics. One prominent example is the treatment of nuclei, which are typically considered as composite particles rather than interacting protons and neutrons. Nuclei with even atomic number tlierefore behave like individual bosons and those with odd atomic number as fennions, a distinction that plays an important role in rotational spectroscopy of polyatomic molecules. [Pg.30]


See other pages where Must Composition is mentioned: [Pg.73]    [Pg.289]    [Pg.338]    [Pg.363]    [Pg.125]    [Pg.914]    [Pg.86]    [Pg.189]    [Pg.502]    [Pg.255]    [Pg.261]    [Pg.73]    [Pg.289]    [Pg.338]    [Pg.363]    [Pg.125]    [Pg.914]    [Pg.86]    [Pg.189]    [Pg.502]    [Pg.255]    [Pg.261]    [Pg.148]    [Pg.216]    [Pg.108]    [Pg.89]    [Pg.29]   


SEARCH



Must

© 2024 chempedia.info