Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electronic devices cells

Secondary batteries Portable electronic devices cell phones, cordless phones, laptops, camcorders, toys. Communications satellites, military radios. Transportation electric vehicles, car ignition batteries. Defense torpedoes, missiles. [Pg.389]

When we are designing objects that are going to come in contact with skin, we need to be aware of not only the TCC of the material, but the thermal energy of the system. Thermoplastic materials are used for electronic housings in a wide range of applications, including power tools and test equipment, hand-held electronic devices (cell phones, tablets, etc.), and also medical equipment. Quite often the electronics within these devices... [Pg.285]

In the microwave region tunable monochromatic radiation is produced by klystrons, each one being tunable over a relatively small frequency range, or a backward wave oscillator, tunable over a much larger range. Both are electronic devices. Absorption experiments are usually carried out in the gas phase, and mica windows, which transmit in this region, are placed on either end of the absorption cell, which may be several metres in length. Stark... [Pg.59]

Global AMI.5 sun illumination of intensity 100 mW/cm ). The DOS (or defect) is found to be low with a dangling bond (DB) density, as measured by electron spin resonance (esr) of - 10 cm . The inherent disorder possessed by these materials manifests itself as band tails which emanate from the conduction and valence bands and are characterized by exponential tails with an energy of 25 and 45 meV, respectively the broader tail from the valence band provides for dispersive transport (shallow defect controlled) for holes with alow drift mobiUty of 10 cm /(s-V), whereas electrons exhibit nondispersive transport behavior with a higher mobiUty of - 1 cm /(s-V). Hence the material exhibits poor minority (hole) carrier transport with a diffusion length <0.5 //m, which puts a design limitation on electronic devices such as solar cells. [Pg.360]

Fig. 4. Some electronic device applications using amorphous silicon (a) solar cell, (b) thin-fiLm transistor, (c) image sensor, and (d) nuclear particle detector. Fig. 4. Some electronic device applications using amorphous silicon (a) solar cell, (b) thin-fiLm transistor, (c) image sensor, and (d) nuclear particle detector.
The energy density of the system depends on the type of cell as well as the current drain. Table 3 gives the specification for the various hthium systems. These coia cells have already been widely used ia electronic devices such as calculators and watches, whereas the cylindrical cells have found apphcations ia cameras. [Pg.534]

Uses. In spite of unique properties, there are few commercial appUcations for monolithic shapes of borides. They are used for resistance-heated boats (with boron nitride), for aluminum evaporation, and for sliding electrical contacts. There are a number of potential uses ia the control and handling of molten metals and slags where corrosion and erosion resistance are important. Titanium diboride and zirconium diboride are potential cathodes for the aluminum Hall cells (see Aluminum and aluminum alloys). Lanthanum hexaboride and cerium hexaboride are particularly useful as cathodes ia electronic devices because of their high thermal emissivities, low work functions, and resistance to poisoning. [Pg.219]

There is a need for small compressors to be driven from low-voltage d.c. supplies. Typical cases are batteries on small boats and mobile homes, where these do not have a mains voltage alternator. It is also possible to obtain such a supply from a bank of solar cells. This requirement has been met in the past by diaphragm compressors driven by a crank and piston rod from a d.c. motor, or by vibrating solenoids. The advent of suitable electronic devices has made it possible to obtain the mains voltage a.c. supply for hermetic compressors from low-voltage d.c. [Pg.45]

Alkaline batteries were introduced in the early 1960s they last two to five times longer than Zn-carbon cells on continuous discharge and command two or three times the price in the USA (far more in Europe and the East). Alkaline cells became a necessary invention and they succeeded as a result of the requirements of the electronic devices. The essential improvement was the change from ammonium chloride and/or zinc chloride electrolyte to alkaline (KOH) electrolyte, the steel can construction, the outside cathode, and the zinc powder (large surface) anode. A main low-cost feature is that they use pressed cathodes and do not need to follow "jellyroll"... [Pg.65]

In the overcharge tests we carried out, there was no fire or explosion. The cell impedance increased suddenly in every test. This was due to the oxidation of the electrolyte with a low charging current, or to the separator melting with a high charging current. In practical applications, an electronic device should be used to provide overcharge protection and ensure complete safety. [Pg.354]

The nail penetration test is very important and is considered to simulate an internal short in a cell. No electronic device can protect against an internal short, so the cell... [Pg.354]

The cell should also be able to survive a crush test because an electronic device cannot provide protection in this case either. Our test cell remained safe in crush tests, both with a bar and with a flat plate. [Pg.354]

The authors developed a multi-layered microreactor system with a methanol reforma- to supply hydrogen for a small proton exchange membrane fiiel cell (PEMFC) to be used as a power source for portable electronic devices [6]. The microreactor consists of four units (a methanol reformer with catalytic combustor, a carbon monoxide remover, and two vaporizers), and was designed using thermal simulations to establish the rppropriate temperature distribution for each reaction, as shown in Fig. 3. [Pg.67]

A large number of possible applications of arrays of nanoparticles on solid surfaces is reviewed in Refs. [23,24]. They include, for example, development of new (elect-ro)catalytical systems for applications as chemical sensors, biosensors or (bio)fuel cells, preparation of optical biosensors exploiting localized plasmonic effect or surface enhanced Raman scattering, development of single electron devices and electroluminescent structures and many other applications. [Pg.325]

Subcategory A encompasses the manufacture of all batteries in which cadmium is the reactive anode material. Cadmium anode batteries currently manufactured are based on nickel-cadmium, silver-cadmium, and mercury-cadmium couples (Table 32.1). The manufacture of cadmium anode batteries uses various raw materials, which comprises cadmium or cadmium salts (mainly nitrates and oxides) to produce cell cathodes nickel powder and either nickel or nickel-plated steel screen to make the electrode support structures nylon and polypropylene, for use in manufacturing the cell separators and either sodium or potassium hydroxide, for use as process chemicals and as the cell electrolyte. Cobalt salts may be added to some electrodes. Batteries of this subcategory are predominantly rechargeable and find application in calculators, cell phones, laptops, and other portable electronic devices, in addition to a variety of industrial applications.1-4 A typical example is the nickel-cadmium battery described below. [Pg.1311]

The main aims of this chapter are to provide estimates for the amounts of pollutants emitted from processed electronic waste (e-waste) and assess the magnitudes of human exposure to these pollutants. Specifically in this chapter, e-waste is defined as the sum of discarded personal computers, electronic/electrical equipment, electronic entertainment devices, cell phones, television sets, and refrigerators. In another word, e-waste explicitly refers to electronics at their end of life cycle and disposed by end users rather than surplus electronics (brand new products). In addition, e-waste also does not include reusable (e.g., repairable electronics or second hand electronics) and secondary scraps (e.g., noble metals, plastics, and rubbers). [Pg.280]

Perhaps you have just purchased a new electronic device, such as a personal computer, video camera, pager, or cell phone. The advanced circuitry in such devices can malfunction in humid environments. Moisture can reroute and even short circuit electric signals, impairing the operation of your new electronic equipment. Manufacturers recognize that moisture can adversely affect their products and... [Pg.30]

Metal chalcogenide semi-conducting materials have found many applications in opto-electronic, solar cell and photovoltaic devices. Deposition of these materials can be achieved by a variety of techniques of which one of the most... [Pg.331]

These significant findings form the basis of a set of design principles for the construction of molecular photovoltaic cells and other nanoscale electronic devices in which the control of both the rate and directionality of ET processes is an essential requirement. The successful construction of an artificial light-driven proton pump, based on principles of long-range ET processes illustrates the promise of this approach.1501... [Pg.289]

Fuel cells are also being used as nonpolluting electrical generators. They may replace batteries in many electronic devices including laptop computers and cell phones. [Pg.57]


See other pages where Electronic devices cells is mentioned: [Pg.118]    [Pg.249]    [Pg.249]    [Pg.124]    [Pg.577]    [Pg.118]    [Pg.249]    [Pg.249]    [Pg.124]    [Pg.577]    [Pg.134]    [Pg.92]    [Pg.2409]    [Pg.118]    [Pg.234]    [Pg.3]    [Pg.510]    [Pg.69]    [Pg.114]    [Pg.200]    [Pg.323]    [Pg.324]    [Pg.291]    [Pg.128]    [Pg.385]    [Pg.633]    [Pg.653]    [Pg.657]    [Pg.366]    [Pg.591]    [Pg.158]    [Pg.186]    [Pg.409]    [Pg.483]    [Pg.77]    [Pg.462]   
See also in sourсe #XX -- [ Pg.356 ]




SEARCH



Electron devices

Electronic devices electronics

© 2024 chempedia.info