Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nylon 6,6, structure

Nylon-6, structurally quite similar to nylon-6,6, was initially produced in Germany by the ROP of caprolactam, partly as a way to avoid the patents established by DuPont a decade earlier. The copolymer of nylon-6 and nylon-6,6 has a smoother surface than either of the homopolymers ... [Pg.105]

In addition to the use of salt combinations to produce nylons described in Chapter 4, nylons may also be produced by the anionic ROP of lactams. In fact, this method was largely developed to overcome patent rights held by DuPont based on the work of Carothers and his group. This is the preferred method for the production of nylon-6, structurally analogous to nylon-6,6, and is widely practiced in Europe. [Pg.146]

Instead of monomers, polymers in solution can be grafted on Nylon structures. Aqueous solution of poly(acrylic add) is used for impregnation of polyamide fabrics which is subsequently dried during 1 to 5hrs at 80-150° C after which cure is carried out for 15 to 60 min at 150-218° C (99). A copolymer of styrene-maleic anhydride is said to be grafted on polycaprolactam by heating at 230° C at a pressure of 25 kg/cm2 (100). [Pg.102]

The formation of cyclic carbonates of polysaccharides for biopolymer insolubilization [20] has been described and has found application in the preparation of immunosorbents. Coupling of enzymes to polysaccharides, glass and nylon structures using titanium halides has been described [21]. In this case coupling is through hydroxyl groupings. [Pg.110]

CLASS Poly(isocyanates) N-substituted 1-nylons STRUCTURE QH13... [Pg.573]

The nylon structure contains the amide linkage at regular intervals ... [Pg.403]

This selectivity can be explained by the different dissociation constant [63], For instance, the dissociation constant of ascorbic acid (pAia = 4.1) is of three orders of magnitude more acidic than the first dissociation constant of quercetin (pAi, = 7.0). At pH 6 or lower, quercetin is, in large extent, undissociated, while ascorbic acid is partially dissociated. In this condition of pH, quercetin is made hydrophobic and its adsorption on nylon is promoted instead, ascorbic acid is made hydrophilic and its adsorption on nylon is prevented. Also, the electrostatic repulsion with the negative charge present on the nylon structure prevents its adsorption on the polymer. As a result, quercetin is adsorbed on the... [Pg.363]

Polyamide (Section 20 17) A polymer in which individual structural units are joined by amide bonds Nylon is a syn thetic polyamide proteins are naturally occurring polyamides... [Pg.1291]

In the case of commercial crystalline polymers wider differences are to be noted. Many polyethylenes have a yield strength below 20001bf/in (14 MPa) whilst the nylons may have a value of 12 000 Ibf/in (83 MPa). In these polymers the intermolecular attraction, the molecular weight and the type and amount of crystalline structure all influence the mechanical properties. [Pg.74]

Whilst by far the bulk of polyamide materials are used in the form of fibres, they have also become of some importance as speciality thermoplastics of particular use in engineering applications. The fibre-forming polyamides and their immediate chemical derivatives and copolymers are often referred to as nylons. There are also available polyamides of more complex composition which are not fibre-forming and are structurally quite different. These are not normally considered as nylons (see Section 18.10). [Pg.478]

The opening of the caprolactam ring for nylon 6 involves an equilibrium reaction which is easily catalysed by water. In the case of nylon 12 from dodecanelactam, higher temperatures, i.e. above 260°C, are necessary for opening the ring structures but since in this case the condensation is not an equilibrium reaction the process will yield almost 100% of high polymer. ... [Pg.487]

The suppliers of nylon 46 have laid particular emphasis on the fact that this polymer, with its highly symmetrical chain structure, leads to both a high level of crystallinity and a high rate of nucleation. In turn the high nucleation rate leads to a fine crystalline structure which in this case is claimed to lead to a higher impact strength (dry as moulded) than with nylons 6 and 66. [Pg.489]

As may be expected from its structure, nylon 46 has a higher level of water absorption (about 14% in water at 23 °C) than any of the other commercial nylons... [Pg.495]

In addition to the nucleating agents discussed in Section 18.4, many other materials have been found to be effective. Whilst the nylons may be self-nucleating, partieularly if there is some unmelted crystal structure, seeding with higher melting point polymers can be effective. Thus nylon 66 and poly(ethylene terephthalate) are reported to be especially attractive for nylon 6. [Pg.497]

In the early 1950s a new class of polyamides became available differing from the nylons in that they contained bulky side groups, had a somewhat irregular structure and were of low molecular weight (2000-5000). They are marketed under such trade names as Versamids and Beckamides . [Pg.506]

As has been mentioned earlier, a number of copolymers such as nylon 66/610/6 are available. Sueh a copolymer has an irregular structure and thus interchain bonding and crystallisation are limited. As a consequence the copolymer is soluble in alcohols and many other common polar solvents. [Pg.507]

The major aromatics (organics having at least one ring structure with six carbon atoms) manufactured include benzene, toluene, xylene, and naphthalene. Other aromatics manufactured include phenol, chlorobenzene, styrene, phthalic and maleic anhydride, nitrobenzene, and aniline. Benzene is generally recovered from cracker streams at petrochemical plants and is used for the manufacture of phenol, styrene, aniline, nitrobenzene, sulfonated detergents, pesticides such as hexachlorobenzene, cyclohexane (an important intermediate in synthetic fiber manufacture), and caprolactam, used in the manufacture of nylon. Benzene is also used as a general purpose solvent. [Pg.55]

An important subdivision within the thermoplastic group of materials is related to whether they have a crystalline (ordered) or an amorphous (random) structure. In practice, of course, it is not possible for a moulded plastic to have a completely crystalline structure due to the complex physical nature of the molecular chains (see Appendix A). Some plastics, such as polyethylene and nylon, can achieve a high degree of crystallinity but they are probably more accurately described as partially crystalline or semi-crystalline. Other plastics such as acrylic and polystyrene are always amorphous. The presence of crystallinity in those plastics capable of crystallising is very dependent on their thermal history and hence on the processing conditions used to produce the moulded article. In turn, the mechanical properties of the moulding are very sensitive to whether or not the plastic possesses crystallinity. [Pg.4]

As regards the general behaviour of polymers, it is widely recognised that crystalline plastics offer better environmental resistance than amorphous plastics. This is as a direct result of the different structural morphology of these two classes of material (see Appendix A). Therefore engineering plastics which are also crystalline e.g. Nylon 66 are at an immediate advantage because they can offer an attractive combination of load-bearing capability and an inherent chemical resistance. In this respect the arrival of crystalline plastics such as PEEK and polyphenylene sulfide (PPS) has set new standards in environmental resistance, albeit at a price. At room temperature there is no known solvent for PPS, and PEEK is only attacked by 98% sulphuric acid. [Pg.27]

Other nylons are made by varying the molecular length of the diamines and the dibasic acids Nylon-fi. in u.ses sebacic acid (10 carbon atoms), nylon-11 uses an acid from castor oil, and nylon-12 uses butadiene. These variations decrease moisture absorption. Other variations use amines with a ring structure, e.g., the aromatic nylons to give polymers with softening points above 577 F,... [Pg.282]

Examine the structure of the short strand of Nylon 6 in which all amide bonds are Z. What is the monomer unit How many monomers are in the strand Note Each end of the polymer strand has been capped by one or more atoms. Do not count these caps as monomers. Compare the strand to that of a simple polypeptide, for example, polyglycine (see also Chapter 16, Problem 9), and point out any obvious similarities. Pay particular attention to hydrogen bonds. [Pg.248]

Examine the structure of a strand of Nylon 6 in which all amide bonds are E. Describe how this differs from the strand in which the amide linkages are Z. In particular, are the same hydrogen-bond patterns found ... [Pg.248]

Examine the structure of Nylon 6,6 (amide bonds have been assumed to adopt E geometries). What is the repeating unit How many monomers are in the strand Nylon 6,6 is made by combining two different molecules, a diacid and a diamine. Draw these molecules. [Pg.248]

TPEs from blends of rubber and plastics constitute an important category of TPEs. These can be prepared either by the melt mixing of plastics and rubbers in an internal mixer or by solvent casting from a suitable solvent. The commonly used plastics and rubbers include polypropylene (PP), polyethylene (PE), polystyrene (PS), nylon, ethylene propylene diene monomer rubber (EPDM), natural rubber (NR), butyl rubber, nitrile rubber, etc. TPEs from blends of rubbers and plastics have certain typical advantages over the other TPEs. In this case, the required properties can easily be achieved by the proper selection of rubbers and plastics and by the proper change in their ratios. The overall performance of the resultant TPEs can be improved by changing the phase structure and crystallinity of plastics and also by the proper incorporation of suitable fillers, crosslinkers, and interfacial agents. [Pg.634]

Kevlar, a nylon polymer prepared by reaction of 1,4-benzenedicarboxylic acid (terephthalicacid) with 1,4-benzenediamine (p-phenyienediamine), is so strong that it s used to make bulletproof vests. Draw the structure of a segment of Kevlar. [Pg.822]


See other pages where Nylon 6,6, structure is mentioned: [Pg.1309]    [Pg.42]    [Pg.42]    [Pg.122]    [Pg.154]    [Pg.7]    [Pg.217]    [Pg.1322]    [Pg.341]    [Pg.65]    [Pg.168]    [Pg.253]    [Pg.27]    [Pg.234]    [Pg.52]    [Pg.175]    [Pg.488]    [Pg.507]    [Pg.559]    [Pg.26]    [Pg.5]    [Pg.595]    [Pg.38]    [Pg.368]    [Pg.665]   
See also in sourсe #XX -- [ Pg.819 ]

See also in sourсe #XX -- [ Pg.819 ]

See also in sourсe #XX -- [ Pg.676 ]




SEARCH



© 2024 chempedia.info