Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electron solar cells

Metal chalcogenide semi-conducting materials have found many applications in opto-electronic, solar cell and photovoltaic devices. Deposition of these materials can be achieved by a variety of techniques of which one of the most... [Pg.331]

Also, the chemistry and polymerization of discotic monomers has been reviewed [10]. Their current and emerging uses are in optical compensation films for liquid crystal displays, carbon nanostructures, organic electronics, solar cells, light-emitting diodes, and field-effect transistors. [Pg.381]

The future of graphene has been predicted to include its application to electronics, solar cells, and panels. It has been predicted to find applications in strengthening thin materials such as solar panels. When added to plastics, it is argued that the new materials could become good electrical and heat conductors as well and serve in several capacities in satellites and airplanes where low weight is important. [Pg.308]

Hyperpure silicon can be doped with boron, gallium, phosphorus, or arsenic to produce silicon for use in transistors, solar cells, rectifiers, and other solid-state devices which are used extensively in the electronics and space-age industries. [Pg.34]

Selenium exhibits both photovoltaic action, where light is converted directly into electricity, and photoconductive action, where the electrical resistance decreases with increased illumination. These properties make selenium useful in the production of photocells and exposure meters for photographic use, as well as solar cells. Selenium is also able to convert a.c. electricity to d.c., and is extensively used in rectifiers. Below its melting point selenium is a p-type semiconductor and is finding many uses in electronic and solid-state applications. [Pg.96]

As described in the chapter on band structures, these calculations reproduce the electronic structure of inhnite solids. This is important for a number of types of studies, such as modeling compounds for use in solar cells, in which it is important to know whether the band gap is a direct or indirect gap. Band structure calculations are ideal for modeling an inhnite regular crystal, but not for modeling surface chemistry or defect sites. [Pg.319]

Mercury Telluride. Compounds of mercury with tellurium have gained importance as semiconductors with appHcations in infrared detection (9) and solar cells (10). The ratio of the components is varied, and other elements such as cadmium, zinc, and indium are added to modify the electronic characteristics. [Pg.114]

Perhaps the most familiar example in the specialty items category is the consumer electronics market which consists primarily of solar-powered calculators and watches. Although volumes are large in terms of units sold, the revenues are relatively small. Further, the competition is fierce for any photovoltaics manufacturer who seeks to sell commodity solar cells to the consumer goods producer. [Pg.474]

Global AMI.5 sun illumination of intensity 100 mW/cm ). The DOS (or defect) is found to be low with a dangling bond (DB) density, as measured by electron spin resonance (esr) of - 10 cm . The inherent disorder possessed by these materials manifests itself as band tails which emanate from the conduction and valence bands and are characterized by exponential tails with an energy of 25 and 45 meV, respectively the broader tail from the valence band provides for dispersive transport (shallow defect controlled) for holes with alow drift mobiUty of 10 cm /(s-V), whereas electrons exhibit nondispersive transport behavior with a higher mobiUty of - 1 cm /(s-V). Hence the material exhibits poor minority (hole) carrier transport with a diffusion length <0.5 //m, which puts a design limitation on electronic devices such as solar cells. [Pg.360]

Fig. 4. Some electronic device applications using amorphous silicon (a) solar cell, (b) thin-fiLm transistor, (c) image sensor, and (d) nuclear particle detector. Fig. 4. Some electronic device applications using amorphous silicon (a) solar cell, (b) thin-fiLm transistor, (c) image sensor, and (d) nuclear particle detector.
Fig. 1. The energy levels in a semiconductor. Shown are the valence and conduction bands and the forbidden gap in between where represents an occupied level, ie, electrons are present O, an unoccupied level and -3- an energy level arising from a chemical defect D and occurring within the forbidden gap. The electrons in each band are somewhat independent, (a) A cold semiconductor in pitch darkness where the valence band levels are filled and conduction band levels are empty, (b) The same semiconductor exposed to intense light or some other form of excitation showing the quasi-Fermi level for each band. The energy levels are occupied up to the available voltage for that band. There is a population inversion between conduction and valence bands which can lead to optical gain and possible lasing. Conversely, the chemical potential difference between the quasi-Fermi levels can be connected as the output voltage of a solar cell. Fquilihrium is reestabUshed by stepwise recombination at the defect levels D within the forbidden gap. Fig. 1. The energy levels in a semiconductor. Shown are the valence and conduction bands and the forbidden gap in between where represents an occupied level, ie, electrons are present O, an unoccupied level and -3- an energy level arising from a chemical defect D and occurring within the forbidden gap. The electrons in each band are somewhat independent, (a) A cold semiconductor in pitch darkness where the valence band levels are filled and conduction band levels are empty, (b) The same semiconductor exposed to intense light or some other form of excitation showing the quasi-Fermi level for each band. The energy levels are occupied up to the available voltage for that band. There is a population inversion between conduction and valence bands which can lead to optical gain and possible lasing. Conversely, the chemical potential difference between the quasi-Fermi levels can be connected as the output voltage of a solar cell. Fquilihrium is reestabUshed by stepwise recombination at the defect levels D within the forbidden gap.
Solar cells the difference between conduction and valence band chemical potentials is the available output voltage of a solar cell. Light creates the chemical potential difference simply by boosting a population of electrons from the valence band into the conduction band (see Photovoltaic cells Solar energy). [Pg.116]

The chemical and electronic properties of elements at the interfaces between very thin films and bulk substrates are important in several technological areas, particularly microelectronics, sensors, catalysis, metal protection, and solar cells. To study conditions at an interface, depth profiling by ion bombardment is inadvisable, because both composition and chemical state can be altered by interaction with energetic positive ions. The normal procedure is, therefore, to start with a clean or other well-characterized substrate and deposit the thin film on to it slowly at a chosen temperature while XPS is used to monitor the composition and chemical state by recording selected characteristic spectra. The procedure continues until no further spectral changes occur, as a function of film thickness, of time elapsed since deposition, or of changes in substrate temperature. [Pg.30]

A photovoltaic cell (often called a solar cell) consists of layers of semiconductor materials with different electronic properties. In most of today s solar cells the semiconductor is silicon, an abundant element in the earth s crust. By doping (i.e., chemically introducing impurity elements) most of the silicon with boron to give it a positive or p-type electrical character, and doping a thin layer on the front of the cell with phosphorus to give it a negative or n-type character, a transition region between the two types... [Pg.1058]

There is a need for small compressors to be driven from low-voltage d.c. supplies. Typical cases are batteries on small boats and mobile homes, where these do not have a mains voltage alternator. It is also possible to obtain such a supply from a bank of solar cells. This requirement has been met in the past by diaphragm compressors driven by a crank and piston rod from a d.c. motor, or by vibrating solenoids. The advent of suitable electronic devices has made it possible to obtain the mains voltage a.c. supply for hermetic compressors from low-voltage d.c. [Pg.45]

Ultrafast photoinduced electron transfer in semiconducting polymers mixed with controlled amounts of acceptors this phenomenon has opened the way to a variety of applications including high-sensitivity plastic photodiodes, and efficient plastic solar cells ... [Pg.4]

In two-component charge transfer systems, such as in the bulk-heterojuncdon solar cells presented here, deviations of the V,K. from the results of pristine single layer or bilayer devices are expected for two reasons first, some pan of the available difference in electrochemical energy is used internally by the charge transfer to a lower energetic position on the electron acceptor second, the relative posi-... [Pg.287]

Following the same procedure, the kinetic constants have been determined for very different electrochemical conditions. When n-WSe2 electrodes are compared in contact with different redox systems it is, for example, found9 that no PMC peak is measured in the presence of 0.1 M KI, but a clear peak occurs in presence of 0.1 M K4[Fe(CN)6], which is known to be a less efficient electron donor for this electrode in liquid junction solar cells. When K4[Fe(CN)6] is replaced by K3[Fe(CN)6], its oxidized form, a large shoulder is found, indicating that minority carriers cannot react efficiently at the semiconductor/electrolyte junction (Fig. 31). [Pg.487]

ZnO instead of T1O2 because ZnO provides a 220 times higher mobility for photoinjected electrons, which would allow reduction of the exciting laser intensity. The slow PMC decay of TiOrbased nanostructured sensitization solar cells (the Ru complex as sensitizer), which cannot be matched by a single exponential curve and is influenced by a bias illumination, is strongly affected by the concentration of iodide in the electrolyte (Fig. 38). On the basis of PMC transients and their dependence on the iodide concentration, a kinetic mechanism for the reaction of photoinjected electrons could be elaborated.40... [Pg.506]

Preliminary measurements with space-resolved PMC techniques have shown that PMC images can be obtained from nanostructured dye sensitization cells. They showed a chaotic distribution of PMC intensities that indicate that local inhomogeneities in the preparation of the nanostructured layer affect photoinduced electron injection. A comparison of photocurrent maps taken at different electrode potentials with corresponding PMC maps promises new insight into the function of this unconventional solar cell type. [Pg.514]

The most common oxidation state of titanium is +4, in which the atom has lost both its 4s-electrons and its two 3d-electrons. Its most important compound is tita-nium(IV) oxide, Ti02, which is almost universally known as titanium dioxide. This oxide is a brilliantly white (when finely powdered), nontoxic, stable solid used as the white pigment in paints and paper. It acts as a semiconductor in the presence of light, and so it is used to convert solar radiation into electrical energy in solar cells. [Pg.781]


See other pages where Electron solar cells is mentioned: [Pg.2888]    [Pg.2890]    [Pg.245]    [Pg.466]    [Pg.467]    [Pg.468]    [Pg.468]    [Pg.468]    [Pg.468]    [Pg.345]    [Pg.362]    [Pg.363]    [Pg.21]    [Pg.387]    [Pg.161]    [Pg.433]    [Pg.240]    [Pg.270]    [Pg.271]    [Pg.272]    [Pg.291]    [Pg.582]    [Pg.514]    [Pg.34]    [Pg.199]    [Pg.176]    [Pg.385]    [Pg.7]   
See also in sourсe #XX -- [ Pg.516 ]




SEARCH



Fullerene Derivatives as Electron Acceptors in Polymer Solar Cells

Solar cells electron transfer

Solar cells, modeling electron diffusion length

© 2024 chempedia.info