Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Impurity elements

It is recovered commercially from monazite sand, which contains about 3%, and from bastnasite, which contains about 0.2%. Wohler obtained the impure element in 1828 by reduction of the anhydrous chloride with potassium. The metal is now produced commercially by reduction of the fluoride with calcium metal. It can also be prepared by other techniques. [Pg.73]

As the weld metal solidifies, impurity elements are rejected into the molten weld pool, eg, sulfur and phosphoms in steel welds (Fig. 7) (8). The final weld metal to soHdify, located along the weld centerline at the surface of the weld, has increased levels of these elements, which act to lower the... [Pg.345]

Fig. 7. (a) Impurity elements are rejected into the Hquid between the dendritic solidification fronts, (b) Corresponding impurity concentration profiles. Cq, weld metal composition k, impurity partitioning coefficient in the Hquid maximum impurity soHd solubiHty eutectic composition at grain... [Pg.346]

Refined metals, as traded on the open market, vary considerably in composition. However, there are strict specifications for certain impurity elements for a number of metals. The degree of purity of common industrial metals obtained from modem metallurgical practices is shown in Table 2 (3). [Pg.159]

Analytical Methods. Molybdenum contents in ore concentrates and technical oxide are most accurately deterrnined gravimetricaHy by precipitating lead molybdate. Molybdenum content is usually not determined on pure compounds or metal. Instead, spectrographic methods are used to measure impurity elements that must be controlled. Carbon and oxygen in metal products are measured by standard gas analysis methods. [Pg.463]

In most cases, the activator impurity must be incorporated during crystal growth. An appropriate amount of impurity element is dissolved in the molten Ge and, as crystal growth proceeds, enters the crystal at a concentration that depends on the magnitude of the distribution coefficient. For volatile impurities, eg, Zn, Cd, and Hg, special precautions must be taken to maintain a constant impurity concentration in the melt. Growth occurs either in a sealed tube to prevent escape of the impurity vapor or in a flow system in which loss caused by vaporization from the melt is replenished from an upstream reservoir. [Pg.435]

In the tributyl phosphate extraction process developed at the Ames Laboratory, Iowa State University (46—48), a solution of tributyl phosphate (TBP) in heptane is used to extract zirconium preferentially from an acid solution (mixed hydrochloric—nitric or nitric acid) of zirconium and hafnium (45). Most other impurity elements remain with the hafnium in the aqueous acid layer. Zirconium recovered from the organic phase can be precipitated by neutralization without need for further purification. [Pg.430]

The powders of zeolites of various trademarks are used to produce petroleum-refining catalysts. In this connection, it is very important to have complete information concerning not only chemical composition and distribution of impurity elements, but also shape, surface, stmcture and sizes of particles. It allows a more detailed analysis of the physical-chemical characteristics of catalysts, affecting their activity at different stages of technological process. One prospective for solving these tasks is X-ray microanalysis with an electron probe (EPMA). [Pg.438]

The analysis of a material known to be impure, but with unspecified impurity elements... [Pg.615]

Impurity element PVDF (4 qualities) (ppbw) PVI (5 lots) (ppbw)... [Pg.677]

Q) averaged element =impurity element (fii =host element... [Pg.130]

A photovoltaic cell (often called a solar cell) consists of layers of semiconductor materials with different electronic properties. In most of today s solar cells the semiconductor is silicon, an abundant element in the earth s crust. By doping (i.e., chemically introducing impurity elements) most of the silicon with boron to give it a positive or p-type electrical character, and doping a thin layer on the front of the cell with phosphorus to give it a negative or n-type character, a transition region between the two types... [Pg.1058]

The constituent elements of anode materials, other than the basis metal, are present whether as a result of being impurities in the raw materials or deliberate alloying additions. The impurity elements can be deleterious to anode performance, thus it is necessary to control the quality of the input materials in order to achieve the required anode performance. Since this will usually have an adverse impact on costs it is often desirable to tolerate a level of impurities and to overcome their action by making alloying additions. Alloying elements may also be added for other reasons which are important to anode production and performance. These matters are discussed in this section. [Pg.139]

Al-Zn-In alloys if the iron content exceeds 0-22%. Equally there may be a limit on the level of alloying addition. This may be related to the absolute level of alloying addition present or to the permissible ratio between it and the impurity element. For example, as Fig. 10.13 shows, a progressive increase in the Mn Fe ratio in an Al-Zn-In anode increases the capacity quite markedly, but once the 1 1 ratio is reached an even more dramatic fall is found. [Pg.141]

A process for the gravimetric determination of mixtures of selenium and tellurium is also described. Selenium and tellurium occur in practice either as the impure elements or as selenides or tellurides. They may be brought into solution by mixing intimately with 2 parts of sodium carbonate and 1 part of potassium nitrate in a nickel crucible, covering with a layer of the mixture, and then heating gradually to fusion. The cold melt is extracted with water, and filtered. The elements are then determined in the filtrate. [Pg.466]

The losses of lead as litharge (PbO) can be minimized if the impurity elements could be oxidized at an oxygen potential lower than that which causes the oxidation of lead. This can be achieved if the activities of the oxides of the impurity elements in the slag are decreased, for example, by the addition of an oxide which reacts very much more strongly with the oxides of the impurities than it does with lead oxide. Sodium hydroxide is a useful reagent for this purpose and sodium nitrate can be used as the source of oxygen. The reaction involved in this process, known as the Harris process, can be formally written as... [Pg.430]

When the boiling points of metallic impurities are much lower than the boiling point of the main metal, they can simply be distilled away in most cases. The rate and the extent of the removal by distillation of these impurity elements depend upon their partial pressures over the main metal/melt. As an example, let the feasibility of distilling magnesium and magnesium chloride from titanium and calcium from the rare earths be considered. In the firstcase, at 900 °C, the pertinent vapor pressure values are P = 4 10-11 torr, PMg = 105 torr... [Pg.441]

Next, let the example of vanadium, which, in the as-reduced condition, may contain a variety of impurities (including aluminum, calcium, chromium, copper, iron, molybdenum, nickel, lead, titanium, and zinc) be considered. Vanadium melts at 1910 °C, and at this temperature it is considerably less volatile than many of the impurity metals present in it. The vapor pressure of pure vanadium at this temperature is 0.02 torr, whereas those of the impurity elements in their pure states are the following aluminum 22 torr calcium 1 atm, chromium 6 torr copper 23 torr iron 2 torr molybdenum 6 1CT6 torr nickel 1 torr lead 1 torr titanium 0.1 torr and zinc 1 atm. However, since most of these impurities form a dilute solution in vanadium, their actual partial pressures over vanadium are considerably lower than the values indicated. Taking this into account, the vaporization rate, mA, of an element A (the evaporating species) can be approximated by the following free evaporation equation (Langmuir equation) ... [Pg.442]

This hematite is not soluble in the cyanide solution. The oxidative pretreatment of gold ores thus reduces the cyanide consumption. Some impurity elements inhibit leaching reactions, examples include elements, carbon, sulfur and arsenic in gold ores are such impurities, but these can be removed by heating in air. [Pg.478]

Electrical cells based on semiconductors that produce electricity from sunlight and deliver the electrical energy to an external load are known as photovoltaic cells. At present most commercial solar cells consist of silicon doped with small levels of controlled impurity elements, which increase the conductivity because either the CB is partly filled with electrons (n-type doping) or the VB is partly filled with holes (p-type doping). The electrons have, on average, a potential energy known as the Fermi level, which is just below that of the CB in n-type semiconductors and just above that of the VB in p-type semiconductors (Figure 11.2). [Pg.199]

Determination of elemental compositions is an important step towards the structural elucidation of drug impurities. Elemental composition of an unknown compound can only be derived from the measurement of its exact mass. In combination with the knowledge of the physiological or chemical process, elemental compositions alone may be enough to propose a correct structure. [Pg.547]

Surface hydroxyl groups are to be expected on all metal oxides. Only a few of the many insoluble oxides have been studied in this respect so far. With advances in the techniques of determination of traces of impurity elements or groups by physical methods or by micro-analytical methods in combination with skillful preparative techniques, further progress in our knowledge of the surface chemistry should be expected. Interesting technological applications may be foreseen. [Pg.264]


See other pages where Impurity elements is mentioned: [Pg.193]    [Pg.24]    [Pg.621]    [Pg.621]    [Pg.2]    [Pg.47]    [Pg.391]    [Pg.258]    [Pg.368]    [Pg.411]    [Pg.429]    [Pg.430]    [Pg.431]    [Pg.436]    [Pg.439]    [Pg.441]    [Pg.650]    [Pg.229]    [Pg.9]    [Pg.38]    [Pg.54]    [Pg.412]    [Pg.440]    [Pg.38]    [Pg.473]    [Pg.329]    [Pg.29]    [Pg.152]    [Pg.90]   
See also in sourсe #XX -- [ Pg.206 ]

See also in sourсe #XX -- [ Pg.206 ]




SEARCH



© 2024 chempedia.info