Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrode anode materials

As anode and cathode of the tube have to share the same vacuum envelope, and the insulating material has to insulate the high tension between these respective electrodes, the material is always part of the vacuum envelope of the tube. Therefore, the insulator has to be vacuum tight and must be able to carry the atmospheric pressure, which loads this envelope. [Pg.533]

Electrode processes are a class of heterogeneous chemical reaction that involves the transfer of charge across the interface between a solid and an adjacent solution phase, either in equilibrium or under partial or total kinetic control. A simple type of electrode reaction involves electron transfer between an inert metal electrode and an ion or molecule in solution. Oxidation of an electroactive species corresponds to the transfer of electrons from the solution phase to the electrode (anodic), whereas electron transfer in the opposite direction results in the reduction of the species (cathodic). Electron transfer is only possible when the electroactive material is within molecular distances of the electrode surface thus for a simple electrode reaction involving solution species of the fonn... [Pg.1922]

Two observations relevant to ECM can be made. (/) Because the anode metal dissolves electrochemicaHy, the rate of dissolution (or machining) depends, by Faraday s laws of electrolysis, only on the atomic weight M and valency of the anode material, the current I which is passed, and the time t for which the current passes. The dissolution rate is not infiuenced by hardness (qv) or any other characteristics of the metal. (2) Because only hydrogen gas is evolved at the cathode, the shape of that electrode remains unaltered during the electrolysis. This feature is perhaps the most relevant in the use of ECM as a metal-shaping process (4). [Pg.306]

If the cations in solution are condensable as a soHd, such as copper, they can plate out on the cathode of the cell. As the same time, perhaps some hydrogen is also produced at the cathode. The SO can react with a copper anode material by taking it into solution to replace the lost copper ions. Thus the anode is a consumable electrode in the process. [Pg.526]

Electrode materials and shapes may have a profound effect on cell designs. Anode materials encountered ia electrochemical processes are... [Pg.74]

One criterion for the anode material is that the chemical potential of lithium in the anode host should be close to that of lithium metal. Carbonaceous materials are therefore good candidates for replacing metallic lithium because of their low cost, low potential versus lithium, and wonderful cycling performance. Practical cells with LiCoOj and carbon electrodes are now commercially available. Finding the best carbon for the anode material in the lithium-ion battery remains an active research topic. [Pg.343]

The semi-consumable electrodes, as the name implies, suffer rather less dissolution than Faraday s law would predict and substantially more than the non-consumable electrodes. This is because the anodic reaction is shared between oxidising the anode material (causing consumption) and oxidising the environment (with no concomitant loss of metal). Electrodes made from silicon-iron, chromium-silicon-iron and graphite fall into this category. [Pg.117]

A thin layer deposited between the electrode and the charge transport material can be used to modify the injection process. Some of these arc (relatively poor) conductors and should be viewed as electrode materials in their own right, for example the polymers polyaniline (PAni) [81-83] and polyethylenedioxythiophene (PEDT or PEDOT) [83, 841 heavily doped with anions to be intrinsically conducting. They have work functions of approximately 5.0 cV [75] and therefore are used as anode materials, typically on top of 1TO, which is present to provide lateral conductivity. Thin layers of transition metal oxide on ITO have also been shown [74J to have better injection properties than ITO itself. Again these materials (oxides of ruthenium, molybdenum or vanadium) have high work functions, but because of their low conductivity cannot be used alone as the electrode. [Pg.537]

The value of Eff is affected by many experimental conditions other than the electrolyte and anode materials. The experimental conditions include such factors as the cell configuration, electrode orientation, electrode surface area, working electrode substrate, charge-discharge currents, charge quantity, and amount of electrolyte. [Pg.342]

This presentation reports some studies on the materials and catalysis for solid oxide fuel cell (SOFC) in the author s laboratory and tries to offer some thoughts on related problems. The basic materials of SOFC are cathode, electrolyte, and anode materials, which are composed to form the membrane-electrode assembly, which then forms the unit cell for test. The cathode material is most important in the sense that most polarization is within the cathode layer. The electrolyte membrane should be as thin as possible and also posses as high an oxygen-ion conductivity as possible. The anode material should be able to deal with the carbon deposition problem especially when methane is used as the fuel. [Pg.95]

As a rule, the melts have a strong corrosive effect, not only on the reaction products but also on the various metallic and nonmetallic structural materials used to build the cells and reactors. At high current densities, sometimes the anode effect occurs in melts during electrolysis A gas skin is formed at the electrode surface, and there is intense sparking and a drastic increase in voltage. This effect depends on the anode material and on the melt anions, but its reasons are not fully understood. An important reason is insufficient wetting of the electrode surface by the melt, which causes sticking of gas bubbles to the surface. [Pg.134]

Subcategory A encompasses the manufacture of all batteries in which cadmium is the reactive anode material. Cadmium anode batteries currently manufactured are based on nickel-cadmium, silver-cadmium, and mercury-cadmium couples (Table 32.1). The manufacture of cadmium anode batteries uses various raw materials, which comprises cadmium or cadmium salts (mainly nitrates and oxides) to produce cell cathodes nickel powder and either nickel or nickel-plated steel screen to make the electrode support structures nylon and polypropylene, for use in manufacturing the cell separators and either sodium or potassium hydroxide, for use as process chemicals and as the cell electrolyte. Cobalt salts may be added to some electrodes. Batteries of this subcategory are predominantly rechargeable and find application in calculators, cell phones, laptops, and other portable electronic devices, in addition to a variety of industrial applications.1-4 A typical example is the nickel-cadmium battery described below. [Pg.1311]

Now let us consider a model for a SC device that comprises two electrodes (anode and cathode), each of them being electrically connected to a current collector fabricated of A1 foil. Let two of such collectors have a certain thickness of SAi- As an electrode material, an activated carbon powder is considered below. Anode and cathode are interposed with a separator of thickness Ss. The electrodes and separator are impregnated with electrolyte. In this paper we mostly focus on the optimization of SC performance by varying the electrode thickness, while some other effects will briefly be considered in the next section. [Pg.76]

Sucessful application of the air electrode requires solving some key problems the air electrode catalyst, the alkaline electrolyte carbonization, the oxygen reaction with anode materials, an influence of an air humidity on an electrode behavior. [Pg.158]

The Li-Ion system was developed to eliminate problems of lithium metal deposition. On charge, lithium metal electrodes deposit moss-like or dendrite-like metallic lithium on the surface of the metal anode. Once such metallic lithium is deposited, the battery is vulnerable to internal shorting, which may cause dangerous thermal run away. The use of carbonaceous material as the anode active material can completely prevent such dangerous phenomenon. Carbon materials can intercalate lithium into their structure (up to LiCe). The intercalation reaction is very reversible and the intercalated carbons have a potential about 50mV from the lithium metal potential. As a result, no lithium metal is found in the Li-Ion cell. The electrochemical reactions at the surface insert the lithium atoms formed at the electrode surface directly into the carbon anode matrix (Li insertion). There is no lithium metal, only lithium ions in the cell (this is the reason why Li-Ion batteries are named). Therefore, carbonaceous material is the key material for Li-Ion batteries. Carbonaceous anode materials are the key to their ever-increasing capacity. No other proposed anode material has proven to perform as well. The carbon materials have demonstrated lower initial irreversible capacities, higher cycle-ability and faster mobility of Li in the solid phase. [Pg.179]

The characteristics of a carbon material used as active reagent of the negative electrode (anode) of a Lithium-Ion cell considerably influence the power characteristics of the cell as a whole. Thus, the major parameters are the values of specific capacity per unit weight and volume, and also the... [Pg.274]

Kunai and Ishikawa et al. have reported that electrolysis of monochloro-silanes in 1,2-dimethoxyethane using a platinum cathode and a mercury anode gives disilanes in high yield (Scheme 40) [84]. Silver can also be used as an excellent anode material in place of mercury. The electrolysis of a mixture of two different monochlorosilanes produces unsymmetrical disilanes. Trisilanes can also be synthesized by the electrolysis of a mixture of monochlorosilanes and dichlorosilanes. They also reported that the use of copper electrodes is effective for the synthesis of disilanes, trisilanes, tetrasilanes, and pentasilanes [85]. [Pg.85]


See other pages where Electrode anode materials is mentioned: [Pg.278]    [Pg.80]    [Pg.87]    [Pg.246]    [Pg.407]    [Pg.460]    [Pg.343]    [Pg.878]    [Pg.383]    [Pg.405]    [Pg.408]    [Pg.501]    [Pg.132]    [Pg.599]    [Pg.345]    [Pg.84]    [Pg.322]    [Pg.359]    [Pg.921]    [Pg.1318]    [Pg.310]    [Pg.172]    [Pg.299]    [Pg.309]    [Pg.332]    [Pg.335]    [Pg.352]    [Pg.364]    [Pg.246]    [Pg.116]    [Pg.262]    [Pg.309]    [Pg.96]   
See also in sourсe #XX -- [ Pg.148 ]




SEARCH



Anode materials

Anodized electrodes

Electrode anode

Electrode material

Electrodes anode catalyst materials

© 2024 chempedia.info