Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical methods limitations

During the anodic polarization of platinum to potentials of about 3.0 V (RHE), one or several layers (but no more than three) of chemisorbed oxygen are formed, which sometimes are called the a-oxide of platinum. The limiting thickness of these layers is about 1.3 nm. They can be studied both by electrochemical methods and by ellipsometry. At more positive potentials phase-oxide surface layers, the p-oxides are formed. The quantitative composition and structure of these layers and the exact limits of potential for their formation depend on many factors composition of the electrolyte solution, time of polarization, surface history, and often remain unknown. [Pg.546]

It is the purpose here to briefly review the state of the art of the most important electrochemical methods for medical applications, and report on the status and viability of currently emerging research. To accomplish this, electrochemical methods have been divided into four basic categories. The first two categories (Sect. 2 and 3) represent the relatively mature contribution of electrochemistry to medical diagnostics. Sections four and five deal largely with developments in electrochemistry which have not yet achieved commercialization, but which have the greatest likelihood of future success. There are, of course, some minor areas of research which have been intentionally omitted because of space limitations. Much of this work can be found in the references provided in the text. [Pg.51]

Table 8.76 shows the main characteristics of voltammetry. Trace-element analysis by electrochemical methods is attractive due to the low limits of detection that can be achieved at relatively low cost. The advantage of using standard addition as a means of calibration and quantification is that matrix effects in the sample are taken into consideration. Analytical responses in voltammetry sometimes lack the predictability of techniques such as optical spectrometry, mostly because interactions at electrode/solution interfaces can be extremely complex. The role of the electrolyte and additional solutions in voltammetry are crucial. Many determinations are pH dependent, and the electrolyte can increase both the conductivity and selectivity of the solution. Voltammetry offers some advantages over atomic absorption. It allows the determination of an element under different oxidation states (e.g. Fe2+/Fe3+). [Pg.670]

The new edition of Principles of Electrochemistry has been considerably extended by a number of new sections, particularly dealing with electrochemical material science (ion and electron conducting polymers, chemically modified electrodes), photoelectrochemistry, stochastic processes, new aspects of ion transfer across biological membranes, biosensors, etc. In view of this extension of the book we asked Dr Ladislav Kavan (the author of the section on non-electrochemical methods in the first edition) to contribute as a co-author discussing many of these topics. On the other hand it has been necessary to become less concerned with some of the classical topics the details of which are of limited importance for the reader. [Pg.11]

The use of conventional electrochemical methods to study the effect of metal adatoms on the electrochemical oxidation of an organic adsorbate may be in some cases of limited value. Very often, in the potential region of interest the current due to the oxidation of an organic residue is masked by faradaic or capacitive responses of the cocatalyst itself. The use of on-line mass spectroscopy overcomes this problem by allowing the observation of the mass signal-potential response for the C02 produced during the oxidation of the adsorbed organic residue. [Pg.160]

A. Brunet, C. Privat, O. Stepien, M. David-Dufilho, J. Devynck, and M.A. Devynck, Advantages and limits of the electrochemical method using Nafion and Ni-porphyrin-coated microelectrode to monitor NO release from cultured vascular cells. Analusis 28, 469 (2000). [Pg.47]

To date, a few methods have been proposed for direct determination of trace iodide in seawater. The first involved the use of neutron activation analysis (NAA) [86], where iodide in seawater was concentrated by strongly basic anion-exchange column, eluted by sodium nitrate, and precipitated as palladium iodide. The second involved the use of automated electrochemical procedures [90] iodide was electrochemically oxidised to iodine and was concentrated on a carbon wool electrode. After removal of interference ions, the iodine was eluted with ascorbic acid and was determined by a polished Ag3SI electrode. The third method involved the use of cathodic stripping square wave voltammetry [92] (See Sect. 2.16.3). Iodine reacts with mercury in a one-electron process, and the sensitivity is increased remarkably by the addition of Triton X. The three methods have detection limits of 0.7 (250 ml seawater), 0.1 (50 ml), and 0.02 pg/l (10 ml), respectively, and could be applied to almost all the samples. However, NAA is not generally employed. The second electrochemical method uses an automated system but is a special apparatus just for determination of iodide. The first and third methods are time-consuming. [Pg.81]

In virtually all of the simple immersion and two electrode experiments carried out so far, in-diffused H has been detected at the 1016/cm3 level or less. There has been no demonstration that large densities (> 1018/cm3) of defects can be passivated by these methods, and where plasma and electrochemical treatments have been directly compared, the former have been found to be more effective (Tavendale et al., 1986). In contrast to plasma techniques, the electrolyte boiling point limits the temperature range of electrochemical methods, although several hundred degrees Celsius can be utilized for electrolytes like H3P04. [Pg.43]

A prerequisite for a precise and accurate titration is the reproducible identification of an end point which either coincides with the stoichiometric point of the reaction or bears a fixed and measurable relation to it. An end point may be located either by monitoring a property of the titrand which is removed when the stoichiometric point is passed, or a property which can be readily observed when a small excess of the titrant has been added. The most common processes observed in end-point detection are change of colour change of electrical cell potential change of electrical conductivity precipitation or flocculation. (Electrochemical methods are discussed in Chapter 6 precipitation indicators find only limited use.)... [Pg.193]

An alternative electrochemical method has recently been used to obtain the standard potentials of a series of 31 PhO /PhO- redox couples (13). This method uses conventional cyclic voltammetry, and it is based on the CV s obtained on alkaline solutions of the phenols. The observed CV s are completely irreversible and simply show a wave corresponding to the one-electron oxidation of PhO-. The irreversibility is due to the rapid homogeneous decay of the PhO radicals produced, such that no reverse wave can be detected. It is well known that PhO radicals decay with second-order kinetics and rate constants close to the diffusion-controlled limit. If the mechanism of the electrochemical oxidation of PhO- consists of diffusion-limited transfer of the electron from PhO- to the electrode and the second-order decay of the PhO radicals, the following equation describes the scan-rate dependence of the peak potential ... [Pg.368]

Electrochemical methods are available for the direct dehalogenation of organic halides to a limited extent fluorides and monochlorides are generally not reducible [1], In the presence of transition-metal complexes as mediators (Med), however, the electrolysis of halocarbons (RX) can be performed more effectively and selectively under various conditions [155-158]. Mediated electroreduction is most efficient when the electron transfer step E° (Med/Med -) is more negative than E° (RX/RX -) [157] (cf. Section 18.4.1). [Pg.532]

These methoxylated and acetoxylated seknides are a-perfluoroalkyl mono-selenoacetals, which seem to be useful building blocks similar to those of the sulfur analogues described above. So far, only limited methods have been developed for the preparation of monoselenoacetals and they require rather complicated procedures or special reagents. In this regard, this electrochemical method has advantages since monoselenoacetals can be prepared in a one step reaction under mild conditions. [Pg.36]

Regarding the electrochemical method, the generalized forms of the Cottrell relation and the Randles-Sevcik relation were theoretically derived from the analytical solutions to the generalized diffusion equation involving a fractional derivative operator under diffusion-controlled constraints and these are useful in to determining the surface fractal dimension. It is noted that ionic diffusion towards self-affine fractal electrode should be described in terms of the apparent self-similar fractal dimension rather than the self-affine fractal dimension. This means the fractal dimension determined by using the diffusion-limited electrochemical method is the self-similar fractal dimension irrespective of the surface scaling property. [Pg.399]

Although the electrochemical method is widely employed for producing monocrystalline non-stoichiometric salts, it has some disadvantages such as long reaction times (up to several weeks) and drastic limitations imposed on solvents and the amount of the target product (a few milligrams). In contrast, the chemical approach does not suffer from these restrictions and can theoretically afford unlimited quantities of materials. [Pg.418]

A third important reaction of aromatic radical-cations is carbon-carbon bond formation with a further aromatic substrate. This reaction is limited to the oxidation in acetonitrile of substrates with electrondonating substituents. Radical-cations from benzene, naphthalene and anthracene form a-complexes but do not form a a-bonded reaction intermediate. Tlie dimerization reaction has been investigated both by pulse-radiolysis [22] in water and by electrochemical methods [27] in acetoni-... [Pg.191]

Takamura et al. have reported an electrochemical method for the determination of chlorpromazine with an anodically pretreated vitreous carbon electrode [164]. Optimal conditions for the pre-treatment were attained by the anodic oxidation of vitreous carbon electrodes in 0.5 mM phosphate buffer (pH 6.7) at 1.6 V V5. S.C.E. for 2 minutes. This was found to enhance the oxidation peak of the cyclic voltammogram for chlorpromazine by a factor of simeq 30. The peak current at +0.75 V was directly proportional to the concentration of chlorpromazine over the range of 0.2-40 pM and the detection limit was 0.1 pM. [Pg.129]

The composition and the structure of electrodeposited metallic monolayers have always been a subject of intensive electrochemical investigations. However, the sources of information were limited by the number of available electrochemical methods. The UPD process on singlecrystal surfaces (including Ag) has been summarized by Jtlttner and Lorenz [299]... [Pg.940]

The only nitrenium ions that have been directly characterized by electrochemical generation are those that are kineticaUy stabilized by resonance and steric hindrance. The main limitation to the electrochemical method appears to be competing polymerization processes (Fig. 13.7). It is known that electrolysis of aniline and its... [Pg.618]

Equation (25) is general in that it does not depend on the electrochemical method employed to obtain the i-E data. Moreover, unlike conventional electrochemical methods such as cyclic or linear scan voltammetry, all of the experimental i-E data are used in kinetic analysis (as opposed to using limited information such as the peak potentials and half-widths when using cyclic voltammetry). Finally, and of particular importance, the convolution analysis has the great advantage that the heterogeneous ET kinetics can be analyzed without the need of defining a priori the ET rate law. By contrast, in conventional voltammetric analyses, a specific ET rate law (as a rule, the Butler-Volmer rate law) must be used to extract the relevant kinetic information. [Pg.99]


See other pages where Electrochemical methods limitations is mentioned: [Pg.1971]    [Pg.1971]    [Pg.2429]    [Pg.346]    [Pg.120]    [Pg.40]    [Pg.18]    [Pg.183]    [Pg.707]    [Pg.272]    [Pg.339]    [Pg.174]    [Pg.68]    [Pg.171]    [Pg.112]    [Pg.125]    [Pg.400]    [Pg.463]    [Pg.79]    [Pg.125]    [Pg.204]    [Pg.120]    [Pg.255]    [Pg.563]    [Pg.95]    [Pg.90]    [Pg.165]    [Pg.248]    [Pg.893]    [Pg.93]    [Pg.98]   
See also in sourсe #XX -- [ Pg.203 ]




SEARCH



Electrochemical methods

Electrochemical methods detection limits

Electrochemical methods limiting current

Limit method

Method limitations

© 2024 chempedia.info