Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic substrates

Vilsmeier reagent The reagent obtained from POCI3 mixed with either N,N-dimethyl-formamide or N-methylformanilide. Used for introducing the methanoyl (formyl) (-CHO) group into activated aromatic substrates. [Pg.419]

These systems nitrate aromatie eompounds by a proeess of electro-philie substitution, the eharacter of whieh is now understood in some detail ( 6.1). It should be noted, however, that some of them ean eause nitration and various other reactions by less well understood processes. Among sueh nitrations that of nitration via nitrosation is especially important when the aromatic substrate is a reactive one ( 4.3). In reaetion with lithium nitrate in aeetie anhydride, or with fuming nitrie aeid, quinoline gives a small yield of 3-nitroquinoline this untypieal orientation (ef. 10.4.2 ) may be a eonsequenee of nitration following nucleophilic addition. ... [Pg.2]

The value of the second-order rate constant for nitration of benzene-sulphonic acid in anhydrous sulphuric acid varies with the concentration of the aromatic substrate and with that of additives such as nitromethane and sulphuryl chloride. The effect seems to depend on the total concentration of non-electrolyte, moderate values of which (up to about 0-5 mol 1 ) depress the rate constant. More substantial concentrations of non-electrolytes can cause marked rate enhancements in this medium. Added hydrogen sulphate salts or bases such as pyridine... [Pg.18]

The effect of aromatic substrates on the formation of N02" is shown in the considerably increased substrate selectivity over that obtained with NO2+ salts. On the basis of the experimental data it is suggested that in these nitrations a weaker nitrating species than NO2+ must be involved in the primary interaction with the aromatic substrates. This incipient nitronium ion then attaches itself to the aromatics in a step giving high substrate selectivity. Whether the incipient nitronium ion is the nitracidium ion (H2NO3+), protonated acetyl nitrate (CH3COO—HN02 ) or probably a transition state of any of those unstable species to N02, in which water is loosened, but not yet completely eliminated, is difficult to say and no direct physical evidence is available. [Pg.71]

Consideration of the orientation of substitution Orientation is an important factor to be considered in recognising both changes in the effective electrophile and in the nature of the aromatic substrate. Cases of the former type, which will be met at several places... [Pg.159]

The kinetics of the nitration of benzene, toluene and mesitylene in mixtures prepared from nitric acid and acetic anhydride have been studied by Hartshorn and Thompson. Under zeroth order conditions, the dependence of the rate of nitration of mesitylene on the stoichiometric concentrations of nitric acid, acetic acid and lithium nitrate were found to be as described in section 5.3.5. When the conditions were such that the rate depended upon the first power of the concentration of the aromatic substrate, the first order rate constant was found to vary with the stoichiometric concentration of nitric acid as shown on the graph below. An approximately third order dependence on this quantity was found with mesitylene and toluene, but with benzene, increasing the stoichiometric concentration of nitric acid caused a change to an approximately second order dependence. Relative reactivities, however, were found to be insensitive... [Pg.224]

As early as 1889 Walker (320), using samples of thiazole, 2,4-dimethylthiazoie, pyridine, and 2,6-dimethylpyridine obtained from Hantzsch s laboratory, measured the electrical conductivity of their chlorhydrates and compared them with those of salts of other weak bases, especially quinoline and 2-methylquinoline. He observed the following order of decreasing proton affinity (basicity) quinaldine>2,6-dimethyl-pyridine>quinoline>pyridine>2,4-dimethylthiazole> thiazole, and concluded that the replacement of a nuclear H-atom by a methyl group enhanced the basicity of the aza-aromatic substrates. [Pg.91]

The (thermal) decomposition of thiazol-2-yldiazonium salts in a variety of solvents at 0 C in presence of alkali generates thiazol-2-yl radicals (413). The same radicals result from the photolysis in the same solvents of 2-iodothiazole (414). Their electrophilic character is shown by their ability to attack preferentially positions of high rr-electron density of aromatic substrates in which they are generated (Fig. 1-21). The major... [Pg.111]

Fig. 1-21. Partial rate factors for the phenylation and the thiazol-2-ylation of aromatic substrates (414). Fig. 1-21. Partial rate factors for the phenylation and the thiazol-2-ylation of aromatic substrates (414).
RELATIVE REACTIVITIES OF SOME HALO-AZA-ACTIVATED AROMATIC SUBSTRATES WITH NUCLEOPHILES ... [Pg.568]

Only small quantities of iron(III) bromide are required It is a catalyst for the brommation and as Figure 12 6 indicates is regenerated m the course of the reaction We 11 see later m this chapter that some aromatic substrates are much more reactive than benzene and react rapidly with bromine even m the absence of a catalyst... [Pg.480]

Arenium ion (Section 12 2) The carbocation intermediate formed by attack of an electrophile on an aromatic substrate in electrophilic aromatic substitution See cyclohexadienyl cation... [Pg.1276]

All lation. Maleic anhydride reacts with alkene and aromatic substrates having a C—H bond activated by a,P-unsaturation or an adjacent aromatic resonance (31,32) to produce the following succinic anhydride derivatives. [Pg.449]

As Olah et al. have reported (81JOC2706), iV-nltropyrazole in the presence of Lewis or Brpnsted acid catalysts is an effective nitrating agent for aromatic substrates. The greater lability of the N—NO2 bond in iV-nltropyrazole compared with aliphatic nltramines was discussed on the basis of its molecular structure as determined by X-ray crystallography. [Pg.270]

A study of the aromatic nitration reaction in aqueous nitric acid revealed that when no aromatic substrate was present, an incorporation of 0 from labeled water into nitric acid occurred. [Pg.258]

TWo types of rate expressions have been found to describe the kinetics of most aromatic nitration reactions. With relatively unreactive substrates, second-order kinetics, first-order in the nitrating reagent and first-order in the aromatic, are observed. This second-order relationship corresponds to rate-limiting attack of the electrophile on the aromatic reactant. With more reactive aromatics, this step can be faster than formation of the active electrq)hile. When formation of the active electrophile is the rate-determining step, the concentration of the aromatic reactant no longer appears in the observed rate expression. Under these conditions, different aromatic substrates undergo nitration at the same rate, corresponding to the rate of formation of the active electrophile. [Pg.554]

The case for the generality of the o-complex mechanism is further strengthened by numerous studies showing that benzenium ions (an alternative name for the o-complex) can exist as stable entities under suitable conditions. Substituted benzenium ions can be observed by NMR techniques under stable-ion conditions. They are formed by protonation of the aromatic substrate ... [Pg.555]

Molecular bromine is believed to be the reactive brominating agent in uncatalyzed brominations. The brominations of benzene and toluene are first-order in both bromine and the aromatic substrate in trifluoroacetic acid solution, but the rate expressions become more complicated when these reactions take place in the presence of water. " The bromination of benzene in aqueous acetic acid exhibits a first-order dependence on bromine concentration when bromide ion is present. The observed rate is dependent on bromide ion concentration, decreasing with increasing bromide ion concentration. The detailed kinetics are consistent with a rate-determining formation of the n-complex when bromide ion concentration is low, but with a shift to reversible formation of the n-complex... [Pg.577]

Rates that are independent of aromatic substrate concentration have been found for reaction of benzyl chloride catalyzed by TiCl4 or SbFj in nitromethane. This can be interpreted as resulting from rate-determining formation of the electrophile, presumably a benzyl cation. The reaction of benzyl chloride and toluene shows a second-order dependence on titanium tetrachloride concentration under conditions where there is a large excess of hydrocarbon. ... [Pg.581]

All these kinetic results can be accommodated by a general mechanism that incorporates the following fundamental components (1) complexation of the alkylating agent and the Lewis acid (2) electrophilic attack on the aromatic substrate to form the a-complex and (3) deprotonation. In many systems, there m be an ionization of the complex to yield a discrete carbocation. This step accounts for the fact that rearrangement of the alkyl group is frequently observed during Friedel-Crafts alkylation. [Pg.581]

Friedel-Crafts acylation usually involves the reaction of an acyl halide, a Lewis acid catalyst, and the aromatic substrate. Several species may function as the active electrophile, depending on the reactivity of the aromatic compound. For activated aromatics, the electrophile can be a discrete positively charged acylium ion or the complex formed... [Pg.583]

Among the reagents that are classified as weak electrophiles, the best studied are the aromatic diazonium ions, which reagents react only with aromatic substrates having strong electron-donor substituents. The products are azo compounds. The aryl diazonium ions are usually generated by diazotization of aromatic amines. The mechanism of diazonium ion formation is discussed more completely in Section 11.2.1 of Part B. [Pg.587]

While A -dimethylaniline is an extremely reactive aromatic substrate and is readily attacked by such weak electrophiles as aiyl diazonium ions and nitrosonium ion, this reactivity is greatly diminished by introduction of an alkyl substituent in the ortho position. Explain. [Pg.597]

A novel reaction of perchloryl fluoride with aromatic substrates was discovered by Neeman and Osawa, the oxofluorination reaction. These authors found that reaction of indene with perchloryl fluoride in dioxane-water yields five products, the major product being, 2-fluoroindanone. When applied to 6-dehydroestradiol diacetate (24) there is obtained as the major product the 7a-fluoro-6-ketone (25). Borohydride reduction of the... [Pg.477]

Other well-known reactions are those offluorinated olefins with fluoride ion and negatively substituted aromatic compounds leading to the formation of per-fiuoroalkylated aromatic compounds The reaction may be considered an amonic version of a Fnedel Crafts process and can result in introduction of one or several perfluoroalkyl substituents [/ /] Aromatic substrates include substituted and unsuhstiluled perfiuorobenzenes [J3l, 212, 213, 214], fiuorinated heterocycles [131, 203, 215, 216, 217, 218, 219, 220, 221, 222, 223],perchlorinated heterocycles [224] (equation 44), and other activated aromatic compounds [225] (equation 45) The fluonnated olefins can be linear or cyclic [208] (equation 46)... [Pg.79]

The results given in both Table 1 and in the reviews [4, 5 7, 8, I0 show that xenon difluoride reacts with a wide variety of aromatic substrates to produce regioselecuvely monofluorinated aromatics An example is the preparation of 6-fluoro-L DOPA [83] (equation 48)... [Pg.160]

Carboxylic acids react with xenon difluoride to produce unstable xenon esters The esters decarboxylate to produce free radical intermediates, which undergo fluonnation or reaction with the solvent system Thus aliphatic acids decarboxylate to produce mainly fluoroalkanes or products from abstraction of hydrogen from the solvent Perfluoro acids decarboxylate in the presence of aromatic substrates to give perfluoroalkyl aromatics Aromatic and vinylic acids do not decarboxylate [91] (equation 51)... [Pg.161]

Aromatic substrates react well with perchloryl fluoride after conversion into organohthium intermediates [104, 105] (equations 58 and 59). [Pg.164]

Perfluoroalkylation can be accomplished via direct reaction of peifluoroalkyl halides and copper with aromatic substrates [232, 233, 234, 235, 236] Thus, perfluoroalkyl iodides or bromides react with functionalized benzenes m DMSO m the presence of copper bronze to give the corresponding perfluoroalkylated products directly in moderate to good yields [233] (equation 157) Mixtures of ortho, meta, and para isomers are obtained [232, 233], The use of acetic anhydride as solvent gives similar results [234, 235], Similarly, the direct reaction of perfluoroalkyl iodides and pyrroles with copper metal regiospecifically gives the 2-perfluoroalkylpyrroles [236] (equation 158). [Pg.708]

This cyclization also gives good results in the case of derivatives of naphthalene, anthracene, phenanthrene, and other aromatic substrates [76]... [Pg.953]


See other pages where Aromatic substrates is mentioned: [Pg.404]    [Pg.405]    [Pg.19]    [Pg.71]    [Pg.71]    [Pg.112]    [Pg.183]    [Pg.344]    [Pg.466]    [Pg.271]    [Pg.287]    [Pg.41]    [Pg.28]    [Pg.555]    [Pg.21]    [Pg.113]    [Pg.568]    [Pg.953]    [Pg.951]   
See also in sourсe #XX -- [ Pg.177 ]




SEARCH



© 2024 chempedia.info