Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cell electric potentials

In contrast to the pre-existing models that merely portrayed membrane potentials, the new generation of models calculated the ion fluxes that give rise to the changes in cell electrical potential. Thus, the new models provided the core foundation for a mechanistic description of cell function. Their concept was applied to cardiac cells by Denis Noble in 1960. [Pg.136]

Metal plates in electrical cell Electrical potential Air Plastics... [Pg.79]

The fundamental principle of SPE reactors is the coupling of the transport of electrical charges, i.e. an electrical current with a transport of ions (cations or anions), through a SPE membrane due to an externally applied (e.g. electrolysis) or internally generated (e.g. fuel cells) electrical potential gradient. For example, in a chlorine/alkaline SPE reactor (Fig. 13.3), the anode and cathode were separated by a cation-SPE membrane (e.g. Nafion 117) forming two compartments, containing the anolyte (e.g. 25 wt% NaCl solution) and the catholyte (e.g. dilute sodium hydroxide), respectively. [Pg.311]

Example 11.1 Cell electric potentials In living systems, ions in the intracellular phase and the extracellular phase produce a potential difference of about 80 mV between the two phases. The intracellular phase potential is negative (Garby and Larsen, 1995). Determine the difference in electrical potential energy per mole positive monovalent ion, e.g., Na+, between the two phases. [Pg.542]

Now that an electrochemical galvanic cell has been described in details, it is convenient at this moment to expand the thermodynamic of electrochemistiy in terms of chemical energy, which in turn, wiU be converted to electrical energy. The subsequent analytical procedure leads to the derivation of the Nemst equation, which is suitable for determining the cell electric potential when ion activities are less than unity as nonstandard conditions. [Pg.40]

A special example of electrical work occurs when work is done on an electrochemical cell or by such a cell on the surroundings -w in the convention of this article). Themiodynamics applies to such a cell when it is at equilibrium with its surroundings, i.e. when the electrical potential (electromotive force emi) of the cell is... [Pg.327]

Migration is the movement of ions due to a potential gradient. In an electrochemical cell the external electric field at the electrode/solution interface due to the drop in electrical potential between the two phases exerts an electrostatic force on the charged species present in the interfacial region, thus inducing movement of ions to or from the electrode. The magnitude is proportional to the concentration of the ion, the electric field and the ionic mobility. [Pg.1925]

The fourth fully developed membrane process is electrodialysis, in which charged membranes are used to separate ions from aqueous solutions under the driving force of an electrical potential difference. The process utilizes an electrodialysis stack, built on the plate-and-frame principle, containing several hundred individual cells formed by a pair of anion- and cation-exchange membranes. The principal current appHcation of electrodialysis is the desalting of brackish groundwater. However, industrial use of the process in the food industry, for example to deionize cheese whey, is growing, as is its use in poUution-control appHcations. [Pg.76]

The aperture impedance principle of blood cell counting and sizing, also called the Coulter principle (5), exploits the high electrical resistivity of blood cell membranes. Red blood cells, white blood cells, and blood platelets can all be counted. In the aperture impedance method, blood cells are first diluted and suspended ia an electrolytic medium, then drawn through a narrow orifice (aperture) separating two electrodes (Fig. 1). In the simplest form of the method, a d-c current flows between the electrodes, which are held at different electrical potentials. The resistive cells reduce the current as the cells pass through the aperture, and the current drop is sensed as a change in the aperture resistance. [Pg.401]

Design Principles An individual fuel cell will generate an electrical potential of about 1 V or less, as discussed above, and a current that is proportional to the external load demand. For practical apph-cations, the voltage of an individual fuel cell is obviously too small, and cells are therefore stacked up as shown in Fig. 27-61. Anode/ electrolyte/cathode assemblies are electrically connected in series by inserting a bipolar plate between the cathode of one cell and the anode of the next. The bipolar plate must be impervious to the fuel... [Pg.2410]

The number of fuel cells that are stacked is determined bv the desired electrical potential. For svsterns it can be about 200... [Pg.2411]

This handbook deals only with systems involving metallic materials and electrolytes. Both partners to the reaction are conductors. In corrosion reactions a partial electrochemical step occurs that is influenced by electrical variables. These include the electric current I flowing through the metal/electrolyte phase boundary, and the potential difference A( = 0, - arising at the interface. and represent the electric potentials of the partners to the reaction immediately at the interface. The potential difference A0 is not directly measurable. Therefore, instead the voltage U of the cell Me /metal/electrolyte/reference electrode/Me is measured as the conventional electrode potential of the metal. The connection to the voltmeter is made of the same conductor metal Me. The potential difference - 0 is negligibly small then since A0g = 0b - 0ei ... [Pg.29]

Concentration cell corrosion occurs in an environment in which an electrochemical cell is affected by a difference in concentrations in the aqueous medium. The most common form is crevice corrosion. If an oxygen concentration gradient exists (usually at gaskets and lap joints), crevice corrosion often occurs. Larger concentration gradients cause increased corrosion (due to the larger electrical potentials present). [Pg.14]

Maintenance of electrical potential between the cell membrane exterior and interior is a necessity for the proper functioning of excitable neuronal and muscle cells. Chemical compounds can disturb ion fluxes that are essential for the maintenance of the membrane potentials. Fluxes of ions into the cells or out of the cells can be blocked by ion channel blockers (for example, some marine tox-... [Pg.282]

A fuel cell has two basic elements a fuel delivery system and an electro-chemical cell that converts the delivered fuel into useful electricity. It is this unique combination that enables fuel cells to potentially offer the best features of both heat engines and batteries. Like batteries, the cell generates a dc electric output and is quiet, clean, and shape-flexible, and may be manufactured using similar plate and filmrolling processes. By contrast, the fuel delivery system ensures that fuel cells, like heat engines, can be... [Pg.521]

Electrode Potential (E) the difference in electrical potential between an electrode and the electrolyte with which it is in contact. It is best given with reference to the standard hydrogen electrode (S.H.E.), when it is equal in magnitude to the e.m.f. of a cell consisting of the electrode and the S.H.E. (with any liquid-junction potential eliminated). When in such a cell the electrode is the cathode, its electrode potential is positive when the electrode is the anode, its electrode potential is negative. When the species undergoing the reaction are in their standard states, E =, the stan-... [Pg.1367]

The net electrochemical driving force is determined by two factors, the electrical potential difference across the cell membrane and the concentration gradient of the permeant ion across the membrane. Changing either one can change the net driving force. The membrane potential of a cell is defined as the inside potential minus the outside, i.e. the potential difference across the cell membrane. It results from the separation of charge across the cell membrane. [Pg.457]

It is at the anode that oxidation takes place, with the anodic metal suffering a loss of negatively charged electrons. The resulting positively charged metal ions dissolve in the water electrolyte and metal wastage occurs. In the corrosion cell, the metal or metal area having the lowest electrical potential becomes the anode. [Pg.149]

A photovoltaic cell is basically a semiconductor diode consisting of a junction similar to the junction of a transistor. An electrical potential is formed by n-type doping on one side and p-type on the other. Under the impact of light (photons), such as in sunlight, electrons move from the p side, across the junction to the n side, and, through electrical contacts, can be drawn as a usable current (Fig. 15.4). [Pg.393]

Rona, J.P., Cornel, D., Gignon, C. Heller, R. (1982). The electrical potential difference across the tonoplast of Acer pseudoplantus cells. Physiologic Vegetale, 20, 459-63. [Pg.113]

The following factors affect net diffusion of a substance (1) Its concentration gradient across the membrane. Solutes move from high to low concentration. (2) The electrical potential across the membrane. Solutes move toward the solution that has the opposite charge. The inside of the cell usually has a negative charge. (3) The permeability coefficient of the substance for the membrane. (4) The hydrostatic pressure gradient across the membrane. Increased pressure will increase the rate and force of the collision between the molecules and the membrane. (5) Temperature. Increased temperature will increase particle motion and thus increase the frequency of collisions between external particles and the membrane. In addition, a multitude of channels exist in membranes that route the entry of ions into cells. [Pg.423]

In general, cells maintain a low inttaceUulat Na concentration and a high intracellular K+ concentration (Table 41-1), along with a net negative electrical potential inside. The pump that maintains these gradients is an ATPase that is activated by Na and (Na -K ATPase see Figure 41-13). The ATPase is an integral... [Pg.427]


See other pages where Cell electric potentials is mentioned: [Pg.486]    [Pg.72]    [Pg.275]    [Pg.162]    [Pg.486]    [Pg.72]    [Pg.275]    [Pg.162]    [Pg.351]    [Pg.462]    [Pg.127]    [Pg.489]    [Pg.494]    [Pg.81]    [Pg.536]    [Pg.482]    [Pg.319]    [Pg.676]    [Pg.655]    [Pg.1317]    [Pg.379]    [Pg.13]    [Pg.1281]    [Pg.612]    [Pg.400]    [Pg.143]   
See also in sourсe #XX -- [ Pg.542 ]

See also in sourсe #XX -- [ Pg.486 ]

See also in sourсe #XX -- [ Pg.542 ]




SEARCH



Cathodic protection Cell Potential (Also Electric

Cell Potential, Electrical Work, and Free Energy

Cell membranes, electrical potentials across

Cell potential electrical work, and free

Cell potentials

Cell, electric

Electric Potentials in the Cell

Electrical potential

Electrical potentials across cell

Electrical potentials, Voltaic cells

Electrochemical cell electric potential

Electrochemical cell electric potential difference generated

Electrochemical cells electrical potentials

Electrochemistry cell potential, electrical work

Free energy cell potential, electrical work

Potential difference, electrical work done and AG for the cell reaction

Transmembrane electrical potential intact cell

© 2024 chempedia.info