Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrochemical devices cells

Fuel Cell Catalysts. Euel cells (qv) are electrochemical devices that convert the chemical energy of a fuel direcdy into electrical and thermal energy. The fuel cell, an environmentally clean method of power generation (qv), is more efficient than most other energy conversion systems. The main by-product is pure water. [Pg.173]

Imagine if we could extract significantly more useful energy out of our precious fuel resources Think how remarkable it would be to carry out combustion processes at efficiencies not possible in even the most sophisticated heat engines. These are not empty dreams. Such a device was first demonstrated in 1839. Called a fuel cell, this electrochemical device may eventually reshape major energy use patterns throughout society. [Pg.174]

Electrolytes are highly important components of all galvanic cells and electrochemical devices. In most electrochemical devices, such as electrolyzers, batteries, and the like, aqueous solutions of acids and salts are used as electrolytes. Aqueous solutions are easy to prepare, convenient to handle, and as a rule are made from readily available, relatively inexpensive materials. By changing the composition and concentration of the components, it is relatively easy to adjust the specific conductance and other physicochemical properties of these aqueous solutions. [Pg.127]

At present, intercalation compounds are used widely in various electrochemical devices (batteries, fuel cells, electrochromic devices, etc.). At the same time, many fundamental problems in this field do not yet have an explanation (e.g., the influence of ion solvation, the influence of defects in the host structure and/or in the host stoichiometry on the kinetic and thermodynamic properties of intercalation compounds). Optimization of the host stoichiometry of high-voltage intercalation compounds into oxide host materials is of prime importance for their practical application. Intercalation processes into organic polymer host materials are discussed in Chapter 26. [Pg.448]

Despite their high cost, they are used in industrial electrolyses, fuel cells, and many electrochemical devices. The large investments associated with platinum electrocatalysts usually are paid back by appreciably higher efficiencies. [Pg.525]

Walker, J. L. Single Cell Measurement with Ion-Selective Electrodes, in Medical and Biological Applications of Electrochemical Devices (Koryta, J., ed.) New York, Wiley, 1980, p. 109... [Pg.44]

As it has been described in various other review articles before, the conversion efficiencies of photovoltaic cells depend on the band gap of the semiconductor used in these systems The maximum efficiency is expected for a bandgap around Eg = 1.3eV. Theoretically, efficiencies up to 30% seem to be possible . Experimental values of 20% as obtained with single crystal solid state devices have been reported " . Since the basic properties are identical for solid/solid junctions and for solid/liquid junctions the same conditions for high efficiencies are valid. Before discussing special problems of electrochemical solar cells the limiting factors in solid photovoltaic cells will be described first. [Pg.81]

Fuel cells are electrochemical devices transforming the heat of combustion of a fuel (hydrogen, natural gas, methanol, ethanol, hydrocarbons, etc.) directly into electricity. The fuel is electrochemically oxidized at the anode, whereas the oxidant (oxygen from the air) is reduced at the cathode. This process does not follow Carnot s theorem, so that higher energy efficiencies are expected up to 40-50% in electrical energy and 80-85% in total energy (heat production in addition to electricity). [Pg.343]

For purposes of verifying of the concept of a self-discharge due to the LEM oxidation by air, we have designed a coin cell with a zinc electrode and a thin PANI/TEG cathode. The typical curves of voltage change for such electrochemical device are given by Figure 6. [Pg.121]

We managed to obtain dense and solid thin films of 3d-metal oxides using the techniques of electrochemical deposition from aqueous fluorine-containing electrolytes. The films have been studied as a possible cathode material for secondary cells. The best samples show good cycle retention and acceptable specific capacity in the range of 180 mAh/g. They also feature a plateau of electrochemical potential at approximately 3,5 V, which is acceptable for present industrially produced electrochemical devices. [Pg.499]

Interfacial electron transfer is the critical process occurring in all electrochemical cells in which molecular species are oxidized or reduced. While transfer of an electron between an electrode and a solvated molecule or ion is conceptually a simple reaction, rates of heterogeneous electron transfer processes depend on a multitude of factors and can vary over many orders of magnitude. Since control of interfacial electron transfer rates is usually essential for successful operation of electrochemical devices, understanding the kinetics of these reactions has been and remains a challenging and technologically important goal. [Pg.438]

Fuel cells are electrochemical devices that convert the chemical energy of a reaction directly into electrical energy. The basic physical structure or building block of a fuel cell consists of an electrolyte layer in contact with a porous anode and cathode on either side. A schematic representation of a fuel cell with the reactant/product gases and the ion conduction flow directions through the cell is shown in Figure 1-1. [Pg.16]

Discusses principles for selecting materials for other types of fuel cells and electrochemical devices... [Pg.447]

His research interests are generally in high-temperature and solid-state chemistry of materials, including electrochemical devices (e.g., chemical sensors and fuel cells) and the chemical stability of materials (e.g., high-temperature oxidation). Dr. Fergus is an active member of the Electrochemical Society, the Metals, Minerals and Materials Society, the American Ceramics Society, the Materials Research Society, and the American Society for Engineering Education. [Pg.462]

The desire to realise technological goals has spurred the discovery of many new solid electrolytes and intercalation compounds based on crystalline and amorphous inorganic solids. In addition an entirely new class of ionic conductors has been discovered by P. V. Wright (1973) and M. B. Armand, J. M. Chabagno and M. Duclot (1978). These polymer electrolytes can be fabricated as soft films of only a few microns, and their flexibility permits interfaces with solid electrodes to be formed which remain intact when the cells are charged and discharged. This makes possible the development of all-solid-state electrochemical devices. [Pg.3]

We will discuss here applications of polyelectrolyte-modified electrodes, with particular emphasis on layer-by-layer self-assembled redox polyelectrolyte multilayers. The method offers a series of advantages over traditional technologies to construct integrated electrochemical devices with technological applications in biosensors, electrochromic, electrocatalysis, corrosion prevention, nanofiltration, fuel-cell membranes, and so on. [Pg.97]

Fuel cells are electrochemical devices that convert the chemical energy of the fuels directly into electrical energy, and are considered to be the key technology for power generation in stationary, automotive, portable and even microscale systems. Among all kinds of fuel cells, direct methanol fuel cells have really exhibited the potential to replace current portable power sources and micropower sources in the market (Yao et al., 2006). [Pg.221]

Electrolytes are ubiquitous and indispensable in all electrochemical devices, and their basic function is independent of the much diversified chemistries and applications of these devices. In this sense, the role of electrolytes in electrolytic cells, capacitors, fuel cells, or batteries would remain the same to serve as the medium for the transfer of charges, which are in the form of ions, between a pair of electrodes. The vast majority of the electrolytes are electrolytic solution-types that consist of salts (also called electrolyte solutes ) dissolved in solvents, either water (aqueous) or organic molecules (nonaqueous), and are in a liquid state in the service-temperature range. [Although nonaqueous has been used overwhelmingly in the literature, aprotic would be a more precise term. Either anhydrous ammonia or ethanol qualifies as a nonaqueous solvent but is unstable with lithium because of the active protons. Nevertheless, this review will conform to the convention and use nonaqueous in place of aprotic .]... [Pg.64]

Solid polymer and gel polymer electrolytes could be viewed as the special variation of the solution-type electrolyte. In the former, the solvents are polar macromolecules that dissolve salts, while, in the latter, only a small portion of high polymer is employed as the mechanical matrix, which is either soaked with or swollen by essentially the same liquid electrolytes. One exception exists molten salt (ionic liquid) electrolytes where no solvent is present and the dissociation of opposite ions is solely achieved by the thermal disintegration of the salt lattice (melting). Polymer electrolyte will be reviewed in section 8 ( Novel Electrolyte Systems ), although lithium ion technology based on gel polymer electrolytes has in fact entered the market and accounted for 4% of lithium ion cells manufactured in 2000. On the other hand, ionic liquid electrolytes will be omitted, due to both the limited literature concerning this topic and the fact that the application of ionic liquid electrolytes in lithium ion devices remains dubious. Since most of the ionic liquid systems are still in a supercooled state at ambient temperature, it is unlikely that the metastable liquid state could be maintained in an actual electrochemical device, wherein electrode materials would serve as effective nucleation sites for crystallization. [Pg.68]

On the other hand, ion conductivity is not the only obstacle that prevents the application of SPEs. In 1994, Anderman published a review highly critical of the prospects for the application of SPEs in electrochemical devices, in which he questioned almost all of the previously projected advantages from the viewpoint of cell design and engineering. "... [Pg.168]

A fuel cell is a device that converts the free energy change of a chemical reaction directly into electrical energy. This conversion occurs by two electrochemical half cell reactions. [Pg.303]

It has then to be concluded that the charge transfer in the ferrocene/ferroci-nium couple in this specific solvent is a fast process at the timescale of the hole diffusion in the semiconductor space charge layer. However, at the present time, it seems that the constraints arising from the construction of a perfectly tight device will hinder the development of these electrochemical photovoltaic cells. [Pg.331]

One of the earliest applications of fast ion conductors was the use of stabilized zirconia as the oxide ion electrolyte in high-temperature fuel cells. Fuel cells are electrochemical devices that convert chemical energy of a fuel-burning reaction such as... [Pg.415]

The chief potential for the application of dyestuffs with electrocatalytic action lies in fuel cells. A fuel cell is an electrochemical device in which the chemical energy of the fuels is converted directly into electrical energy, i.e. without first being transformed into heat energy. To this end, the oxydizing agent, in practically every case oxygen, is led to an electrode. By virtue of the reaction... [Pg.136]


See other pages where Electrochemical devices cells is mentioned: [Pg.577]    [Pg.655]    [Pg.191]    [Pg.268]    [Pg.173]    [Pg.275]    [Pg.148]    [Pg.309]    [Pg.311]    [Pg.380]    [Pg.160]    [Pg.160]    [Pg.552]    [Pg.459]    [Pg.157]    [Pg.160]    [Pg.237]    [Pg.169]    [Pg.379]    [Pg.4]    [Pg.408]    [Pg.137]    [Pg.56]    [Pg.592]    [Pg.336]    [Pg.627]    [Pg.319]   


SEARCH



Electrochemical cell

Electrochemical devices

© 2024 chempedia.info