Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Dopamine inhibitors

Hasselager, E. Rolinski, Z. and Randrup, A. Speeifie antagonism by dopamine inhibitors of items of amphetamine indueed aggressive behavior. Psychopharmacologia 24 485-495, 1972. [Pg.93]

The traditional or typical antipsychotics are dopamine inhibitors that block other neurotransmitters such as acetylcholine, histamine, and norepinephrine. Extrapyramidal symptoms (EPS) are a common side effect with these medications, and the social worker must be able to recognize them. Dystonia is one of the movement problems that may occur, and acute dystonic reactions may present as grimacing, difficulty with speech or swallowing, oculogyric crisis (upward rotation of the eyeballs), muscle spasms of the neck and throat, and extensor rigidity of the back muscles (Carpenter, Conley, Buchanan, 1998). Very often these parkinsonian reactions will occur within the first few days of treatment. It is not uncommon for the client to approach the social worker complaining of a thick or stiff tongue that impairs the ability to speak. [Pg.184]

Application of the CCM to small sets (n < 6) of enzyme inhibitors revealed correlations between the inhibitory activity and the chirality measure of the inhibitors, calculated by Eq. (26) for the entire structure or for the substructure that interacts with the enzyme (pharmacophore) [41], This was done for arylammonium inhibitors of trypsin, Di-dopamine receptor inhibitors, and organophosphate inhibitors of trypsin, acetylcholine esterase, and butyrylcholine esterase. Because the CCM values are equal for opposite enantiomers, the method had to be applied separately to the two families of enantiomers (R- and S-enantiomers). [Pg.419]

Beyond pharmaceutical screening activity developed on aminothiazoles derivatives, some studies at the molecular level were performed. Thus 2-aminothiazole was shown to inhibit thiamine biosynthesis (941). Nrridazole (419) affects iron metabohsm (850). The dehydrase for 5-aminolevulinic acid of mouse liver is inhibited by 2-amino-4-(iS-hydroxy-ethyl)thiazole (420) (942) (Scheme 239). l-Phenyl-3-(2-thiazolyl)thiourea (421) is a dopamine fS-hydroxylase inhibitor (943). Compound 422 inhibits the enzyme activity of 3, 5 -nucleotide phosphodiesterase (944). The oxalate salt of 423, an analog of levamisole 424 (945) (Scheme 240),... [Pg.152]

In addition to halopeiidol, the putative neuroleptics, limcazole (311), lemoxipiide (312), and gevotioline (313) bind to (7-ieceptois as does the dopamine uptake blocker, GBR 12909 (314) and two ligands active at the NMDA receptor, ifenprodil (315) and CNS 1102 (316). NPC 16377, (317) is a selective (7-teceptor ligand. MAO inhibitors and antidepressants also bind to (7-teceptors. Some evidence indicates that (7-teceptors in the brain are in fact a form of cytochrome which may account for the diversity of ligands interacting with (7-sites. [Pg.573]

Monoamine Oxidase Inhibitors. MAOIs inactivate the enzyme MAO, which is responsible for the oxidative deamination of a variety of endogenous and exogenous substances. Among the endogenous substances are the neurotransmitters, norepinephrine, dopamine, and serotonin. The prototype MAOI is iproniazid [54-92-2] (25), originally tested as an antitubercular dmg and a close chemical relative of the effective antitubercular, isoniazid [54-85-3] (26). Tubercular patients exhibited mood elevation, although no reHef of their tuberculosis, following chronic administration of iproniazid. In... [Pg.465]

Methyldopa, through its metaboHte, CX-methyInorepinephrine formed in the brain, acts on the postsynaptic tt2-adrenoceptor in the central nervous system. It reduces the adrenergic outflow to the cardiovascular system, thereby decreasing arterial blood pressure. If the conversion of methyldopa to CX-methyl norepinephrine in the brain is prevented by a dopamine -hydroxylase inhibitor capable of penetrating into the brain, it loses its antihypertensive effects. [Pg.142]

MAO is known to occur in at least two forms, MAO A and MAO B, based on substrate selectivity, inhibition by various dmgs, and cloning experiments. Clorgyline [17780-72-2] is a specific inhibitor of MAO A, which displays a substrate specificity for NE and serotonin. Deprenyl [2323-36-6] is a selective inhibitor of MAO B, and displays a substrate preference for P-phenylethylamine and benzyl amine. Dopamine and tyramine are substrates for both enzymes. [Pg.358]

The ergolines have provided a number of drugs that show interaction with neurotransmitters. Depending on the substitution pattern, they may be dopamine agonists or antagonists, a-adrenergic blockers, or Inhibitors of the release of prolactin. A recent member of the series, pergolide... [Pg.249]

COMT inhibitors rescue l-dopa and improve the brain entry of L-dopa by decreasing 3-OMD formation in peripheral tissues. The dose of L-dopa could be decreased, compared with the present combination therapy. Dose interval of L-dopa could also be prolonged. Further, COMT inhibitors should decrease fluctuations of dopamine formation in the brain. [Pg.337]

An additional benefit of COMT inhibitors can be found in positron emission tomography (PET) studies. In PET, using 6-[18F]-fluoro-L-dopa (6-FD) to visualize the brain dopamine metabolism, the peripheral formation of 3-0-methyl-6-[18F]-fluoro-L-dopa (3-OMFD) by COMT is harmful. 3-OMFD contaminates the brain radioactivity analysed since it is easily transported like 3-OMD to the... [Pg.338]

Dopa decarboxylase is an enzyme catalyzing the synthesis of dopamine from l-DOPA or of serotonin (= 5-hydroxytryptamine) from L-tryptophan. Inhibitors of this enzyme, which do not pass through the... [Pg.437]

MAO converts dopamine to DOPAC (3,4-dihydrox-yphenylacetic acid), which can be further metabolized by COMT to form homovanillic acid (HVA). HVA is the main product of dopamine metabolism and the principal dopamine metabolite in urine. Increased neuronal dopaminergic activity is associated with increases in plasma concentrations of DOPAC and HVA. COMT preferentially methylates dopamine at the 3 -hydroxyl position and utilizes S-adenosyl-L-methio-nine as a methyl group donor. COMT is expressed widely in the periphery and in glial cells. In PD, COMT has been targeted since it can convert l-DOPA to inactive 3-OMD (3-O-methyl-dopa). In the presence of an AADC inhibitor such as carbidopa, 3-OMD is the major metabolite of l-DOPA treatment. [Pg.439]

The dopamine precursor l-DOPA (levodopa) is commonly used in TH treatment of the symptoms of PD. l-DOPA can be absorbed in the intestinal tract and transported across the blood-brain barrier by the large neutral amino acid (LNAA) transport system, where it taken up by dopaminergic neurons and converted into dopamine by the activity of TH. In PD treatment, peripheral AADC can be blocked by carbidopa or benserazide to increase the amount of l-DOPA reaching the brain. Selective MAO B inhibitors like deprenyl (selegiline) have also been effectively used with l-DOPA therapy to reduce the metabolism of dopamine. Recently, potent and selective nitrocatechol-type COMT inhibitors such as entacapone and tolcapone have been shown to be clinically effective in improving the bioavailability of l-DOPA and potentiating its effectiveness in the treatment of PD. [Pg.441]

Ubiquitous mitochondrial monoamine oxidase [monoamine oxygen oxidoreductase (deaminating) (flavin-containing) EC 1.4.3.4 MAO] exists in two forms, namely type A and type B [ monoamine oxidase (MAO) A and B]. They are responsible for oxidative deamination of primary, secondary, and tertiary amines, including neurotransmitters, adrenaline, noradrenaline, dopamine (DA), and serotonin and vasoactive amines, such as tyramine and phenylethylamine. Their nonselec-tive and selective inhibitors ( selective MAO-A and -B inhibitors) are employed for the treatment of depressive illness and Parkinson s disease (PD). [Pg.783]

Acute treatment with nonselective MAO inhibitors (iproniazid, tranylcypromine, phenelzine), as a consequence of inhibiting both forms of the enzyme, increase, brain levels of all monoamines (phenylethylamine, tryptamine, methylhistamine aminergic neurotransmitters (dopamine, noradr enaline, adrenaline and serotonin). By contrast MAO-A inhibitors (clorgyline) increase serotonin and noradrenaline, while MAO-B inhibitors (selegiline, rasagiline) increase brain levels... [Pg.784]

Noradrenaline transporters (NAT) are localized in the presynaptic plasma membrane of adrenergic nerve terminals. They belong to a family of proteins with 12 putative transmembrane proteins which are responsible for recycling of released neurotransmitters (noradrena-line/adrenaline, dopamine, serotonin, amino acid transmitters) back into the presynaptic nerve ending. Noradrenaline transporters can be blocked by a number of different antidepressant drags, including tricyclic antidepressants (e.g. desipramine) and selective noradrenaline reuptake inhibitors (e.g. reboxetine). [Pg.883]

Methylphenidate like cocaine largely acts by blocking reuptake of monoamines into the presynaptic terminal. Methylphenidate administration produces an increase in the steady-state (tonic) levels of monoamines within the synaptic cleft. Thus, DAT inhibitors, such as methylphenidate, increase extracellular levels of monoamines. In contrast, they decrease the concentrations of the monoamine metabolites that depend upon monoamine oxidase (MAO), that is, HVA, but not catecholamine-o-methyltransferase (COMT), because reuptake by the transporter is required for the formation of these metabolites. By stimulating presynaptic autoreceptors, methylphenidate induced increase in dopamine transmission can also reduce monoamine synthesis, inhibit monoamine neuron firing and reduce subsequent phasic dopamine release. [Pg.1039]

Therefore, dopamine transporter inhibitors exhibit less effect in the FC. There, dopamine seems to be reuptaken by the norepinephrine transporter, which dopamine actually has a higher affinity for than norepinephrine itself. [Pg.1039]

These drugs are thought to prolong the effect of levodopa by blocking an enzyme, catechol-O-methyltransferase (COMT), which eliminates dopamine. When given with levodopa, the COMT inhibitors increase the plasma concentrations and duration of action of levodopa... [Pg.268]

The COMT inhibitors should not be administered with the monoamine oxidase (MAO) inhibitors (see Chap. 31) because there is an increased risk of toxicity. If the COMT inhibitors are administered with norepinephrine, dopamine, dobutamine, methyldopa, or epinephrine, there is a risk of increased heart rate, arrhythmias, and excessive blood pressure changes. [Pg.269]


See other pages where Dopamine inhibitors is mentioned: [Pg.328]    [Pg.44]    [Pg.328]    [Pg.44]    [Pg.615]    [Pg.250]    [Pg.517]    [Pg.465]    [Pg.469]    [Pg.469]    [Pg.218]    [Pg.359]    [Pg.7]    [Pg.112]    [Pg.165]    [Pg.338]    [Pg.438]    [Pg.439]    [Pg.783]    [Pg.784]    [Pg.788]    [Pg.789]    [Pg.789]    [Pg.841]    [Pg.841]    [Pg.981]    [Pg.1043]    [Pg.1173]    [Pg.1174]    [Pg.205]    [Pg.264]   
See also in sourсe #XX -- [ Pg.5 , Pg.7 , Pg.24 , Pg.241 , Pg.242 , Pg.290 , Pg.294 , Pg.505 , Pg.506 ]

See also in sourсe #XX -- [ Pg.23 ]

See also in sourсe #XX -- [ Pg.184 ]

See also in sourсe #XX -- [ Pg.271 ]




SEARCH



Dopamine Monoamine oxidase inhibitors

Dopamine and norepinephrine reuptake inhibitors

Dopamine hydroxylase inhibitor

Dopamine inhibitor-induced

Dopamine reuptake inhibitors

Dopamine reuptake inhibitors cocaine

Dopamine transport inhibitors

Dopamine- selective reuptake inhibitors

Dopamine-p-hydroxylase inhibitors

Dopamine-transporter inhibitors

Dopamine-transporter inhibitors pharmacophore model

Dual serotonin-dopamine reuptake inhibitors

Hyperforin inhibitors dopamine

Hypericum extracts inhibitor of dopamine

Norepinephrine dopamine reuptake inhibitors

© 2024 chempedia.info