Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Presynaptic terminals

Llinas, R., Sugimori, M., and Silver, R. B. (1992). Microdomains of high calcium concentration in a presynaptic terminal. Science 256 677-679. [Pg.416]

Long-term potentiation (LTP) is a synaptic plasticity phenomenon that corresponds to an increase in the synaptic strength (increase in the post-synaptic response observed for the same stimulation of the presynaptic terminals) observed after a high frequency stimulation (tetanus) of the afferent fibres. This increased response is still observed hours and even days after the tetanus. The phenomenon is often observed at glutamatergic synapses and involves, in most cases, the activation of the V-methyl D-aspartate (NMDA) subtype of ionotropic glutamate receptors. [Pg.704]

Neurodegeneration. Figure 3 Illustration of synaptic (neuritic) apoptosis. A pyramidal neuron is depicted with cortical afferents synapsing on its dendrites. Localized apoptotic mechanisms lead to the release of cytochrome c from the mitochondria and an increase in the concentration of activated caspase-3 in a presynaptic terminal that is synapsing on a dendritic spine. Increased caspase-3 activity results in a localized breakdown of this nerve terminal and its synapse. Subsequently, the postsynaptic dendritic spine retracts and disappears (Figure modified from Glantz et al. [5] [3]). [Pg.825]

Methylphenidate like cocaine largely acts by blocking reuptake of monoamines into the presynaptic terminal. Methylphenidate administration produces an increase in the steady-state (tonic) levels of monoamines within the synaptic cleft. Thus, DAT inhibitors, such as methylphenidate, increase extracellular levels of monoamines. In contrast, they decrease the concentrations of the monoamine metabolites that depend upon monoamine oxidase (MAO), that is, HVA, but not catecholamine-o-methyltransferase (COMT), because reuptake by the transporter is required for the formation of these metabolites. By stimulating presynaptic autoreceptors, methylphenidate induced increase in dopamine transmission can also reduce monoamine synthesis, inhibit monoamine neuron firing and reduce subsequent phasic dopamine release. [Pg.1039]

Synaptic Transmission. Figure 1 Synaptic transmission. The presynaptic terminal contains voltage-dependent Na Superscript and Ca2+ channels, vesicles with a vesicular neurotransmitter transporter VNT, a plasmalemmal neurotransmitter transporter PNT, and a presynaptic G protein-coupled receptor GPCR with its G protein and its effector E the inset also shows the vesicular H+ pump. The postsynaptic cell contains two ligand-gated ion channels LGIC, one for Na+ and K+ and one for Cl-, a postsynaptic GPRC, and a PNT. In this synapse, released transmitter is inactivated by uptake into cells. [Pg.1171]

Tetanus is a disease caused by the release of neurotoxins from the anaerobic, spore-forming rod Clostridium tetani. The clostridial protein, tetanus toxin, possesses a protease activity which selectively degrades the pre-synaptic vesicle protein synaptobrevin, resulting in a block of glycine and y-aminobutyric acid (GABA) release from presynaptic terminals. Consistent with the loss of neurogenic motor inhibition, symptoms of tetanus include muscular rigidity and hyperreflexia. The clinical course is characterized by increased muscle tone and spasms, which first affect the masseter muscle and the muscles of the throat, neck and shoulders. Death occurs by respiratory failure or heart failure. [Pg.1196]

Figure 3.1 Schematic representation of a generic excitatory synapse in the brain. The presynaptic terminal releases the transmitter glutamate by fusion of transmitter vesicles with the nerve terminal membrane. Glutamate diffuses rapidly across the synaptic cleft to bind to and activate AMPA and NMDA receptors. In addition, glutamate may bind to metabotropic G-protein-coupled glutamate receptors located perisynaptically to cause initiation of intracellular signalling via the G-protein, Gq, to activate the enzyme phospholipase and hence produce inositol triphosphate (IP3) which can release Ca from intracellular calcium stores... Figure 3.1 Schematic representation of a generic excitatory synapse in the brain. The presynaptic terminal releases the transmitter glutamate by fusion of transmitter vesicles with the nerve terminal membrane. Glutamate diffuses rapidly across the synaptic cleft to bind to and activate AMPA and NMDA receptors. In addition, glutamate may bind to metabotropic G-protein-coupled glutamate receptors located perisynaptically to cause initiation of intracellular signalling via the G-protein, Gq, to activate the enzyme phospholipase and hence produce inositol triphosphate (IP3) which can release Ca from intracellular calcium stores...
Ohno-Shosaku T, Maejima T, Kano M. Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron 2001 29 729-738. [Pg.133]

ACh regulates the cortical arousal characteristic of both REM sleep and wakefulness (Semba, 1991, 2000 Sarter Bruno, 1997, 2000). Medial regions of the pontine reticular formation (Figs. 5.2 and 5.7) contribute to regulating both the state of REM sleep and the trait of EEG activation. Within the medial pontine reticular formation, presynaptic cholinergic terminals (Fig. 5.1) that release ACh also are endowed with muscarinic cholinergic receptors (Roth et al, 1996). Autoreceptors are defined as presynaptic receptors that bind the neurotransmitter that is released from the presynaptic terminal (Kalsner, 1990). Autoreceptors provide feedback modulation of transmitter release. Autoreceptor activation... [Pg.121]

Once returned to the presynaptic terminal, dopamine is repackaged into synaptic vesicles via the vesicular monoamine transporter (VMAT) or metabolized to dihydroxyphenylacetic acid (DOPAC) by monoamine oxidase (MAO). Two alternative pathways are available for dopamine catabolism in the synapse, depending on whether the first step is catalyzed by MAO or catechol-O-methyltransferase (COMT). Thus, dopamine can be either deaminated to 3,4-dihydroxyphenylacetic acid (DOPAC) or methylated to 3-methoxytyramine (3-MT). In turn, deamination of 3-MT and methylation of DOPAC leads to homovanillic acid (HVA). In humans, cerebrospinal fluid levels of HVA have been used as a proxy for levels of dopaminergic activity within the brain (Stanley et al. 1985). [Pg.182]

Drake C, Patterson T, Simmons M, Chavkin C, Milner T. Kappa opioid receptor-like immunoreactivity in guinea pig brain ultrastructural localization in presynaptic terminals in hippocampal formation. J Comp Neurol 1996 370 377-395. [Pg.483]

P/Q-type Cav2.1 t lA Neuron presynaptic terminals, heart, brain... [Pg.5]

R-type Cav2.3 OllE Neuron cell bodies and presynaptic terminals, heart, pituitary... [Pg.5]

The answer is c. (Hardman, p 436.) The tricyclics and second-generation antidepressants act by blocking serotonin or norepinephrine uptake into the presynaptic terminal. Fluoxetine selectively inhibits serotonin uptake with minimal effects on norepinephrine uptake. Protriptyline, maprotiline, desipramine, and amoxapine have greater effect on norepinephrine uptake... [Pg.156]

The answer is b. (Kn.lzu.ng, p 5.38.) Crack is the free-base (nonsalt) form of the alkaloid cocaine. It is called crack because, when heated, it makes a crackling sound. Heating crack enables a person to smoke it the drug is readily absorbed through the lungs and produces an intense euphoric effect in seconds Use has led to seizures and cardiac arrhythmias. Some of cocaine s effects (sympathomimetic) are due to blockade of norepinephrine reuptake into presynaptic terminals it does not block receptors. Flashbacks can occur with use of LSD and mescaline but have not been associated with the use of cocaine. [Pg.160]

The answer is b. (Hardmanr p 444.) This patient ate tyramine-rich foods while taking an MAOI and went into hypertensive crisis. Tyramine causes release of stored catecholamines from presynaptic terminals, which can cause hypertension, headache, tachycardia, cardiac arrhythmias, nausea, and stroke. In patients who do not take MAOls, tyramine is inactivated in the gut by MAO, and patients taking MAOls must be warned about the dangers of eating tyramine-rich foods. [Pg.167]

The organization of the presynaptic terminal is one important element for this optimization 158... [Pg.139]

Neurons constitute the most striking example of membrane polarization. A single neuron typically maintains thousands of discrete, functional microdomains, each with a distinctive protein complement, location and lifetime. Synaptic terminals are highly specialized for the vesicle cycling that underlies neurotransmitter release and neurotrophin uptake. The intracellular trafficking of a specialized type of transport vesicles in the presynaptic terminal, known as synaptic vesicles, underlies the ability of neurons to receive, process and transmit information. The axonal plasma membrane is specialized for transmission of the action potential, whereas the plasma... [Pg.140]

In non-neuronal cells, electron microscopy studies reveal very complex endosomal compartments composed of a highly dynamic array of heterogeneous tubulovesicular-membrane structure extending from close vicinity to the plasma membrane to the cell interior, reaching the boundaries of the Golgi apparatus. Presynaptic terminals have similar endosomal systems, albeit less extensive [73, 74]. [Pg.156]


See other pages where Presynaptic terminals is mentioned: [Pg.130]    [Pg.260]    [Pg.438]    [Pg.516]    [Pg.553]    [Pg.824]    [Pg.837]    [Pg.306]    [Pg.61]    [Pg.220]    [Pg.242]    [Pg.248]    [Pg.285]    [Pg.470]    [Pg.132]    [Pg.30]    [Pg.32]    [Pg.110]    [Pg.125]    [Pg.130]    [Pg.183]    [Pg.320]    [Pg.339]    [Pg.5]    [Pg.120]    [Pg.126]    [Pg.129]    [Pg.143]    [Pg.147]    [Pg.152]    [Pg.153]    [Pg.155]   
See also in sourсe #XX -- [ Pg.158 ]

See also in sourсe #XX -- [ Pg.301 ]




SEARCH



Presynaptic

© 2024 chempedia.info