Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Presynaptic autoreceptors

On the other hand, alpha 2 receptors are the only presynaptic noradrenergic receptors on noradrenergic neurons. They regulate NE release and so are called autoreceptors. Presynaptic alpha 2 autoreceptors are located both on the axon terminal,... [Pg.159]

Abstract Presynaptic receptors for dopamine, histamine and serotonin that are located on dopaminergic, histaminergic and sertonergic axon terminals, respectively, function as autoreceptors. Presynaptic receptors also occur as heteroreceptors on other axon terminals. Auto- and heteroreceptors mainly affect Ca2+-dependent exocytosis from the receptor-bearing nerve ending. Some additionally subserve other presynaptic functions. [Pg.290]

Like presynaptic dopamine autoreceptors, presynaptic histamine autoreceptors are activated by the released endogenous transmitter to inhibit further histamine release, as shown by the increase in histamine release caused by antagonists at H3 receptors a definite piece of physiology. Evidence has been presented recently that cardiac postganglionic sympathetic neurons of the guinea pig synthesize and release histamine as a co-transmitter (Li et al. 2003 2006). These noradrenaline-histamine neurons possess H3 autoreceptors which, when activated, depress the release of both noradrenaline and histamine - unlike the D2-like autoreceptors of dopamine-neurotensin neurons which modulate the release of the two cotransmitters in opposite direction (see Section 2.2). It would be of interest to see whether, conversely, activation of ot2-autoreceptors inhibits the release of histamine in the guinea pig heart. [Pg.307]

Starke K (2001) Presynaptic autoreceptors in the third decade focus on a2-adrenoceptors. J Neurochem 78 685-693... [Pg.45]

Methylphenidate like cocaine largely acts by blocking reuptake of monoamines into the presynaptic terminal. Methylphenidate administration produces an increase in the steady-state (tonic) levels of monoamines within the synaptic cleft. Thus, DAT inhibitors, such as methylphenidate, increase extracellular levels of monoamines. In contrast, they decrease the concentrations of the monoamine metabolites that depend upon monoamine oxidase (MAO), that is, HVA, but not catecholamine-o-methyltransferase (COMT), because reuptake by the transporter is required for the formation of these metabolites. By stimulating presynaptic autoreceptors, methylphenidate induced increase in dopamine transmission can also reduce monoamine synthesis, inhibit monoamine neuron firing and reduce subsequent phasic dopamine release. [Pg.1039]

At low doses, both psychostimulants could theoretically stimulate tonic, extracellular levels of monoamines, and the small increase in steady state levels would produce feedback inhibition of further release by stimulating presynaptic autoreceptors. While this mechanism is clearly an important one for the normal regulation of monoamine neurotransmission, there is no direct evidence to support the notion that the doses used clinically to treat ADHD are low enough to have primarily presynaptic effects. However, alterations in phasic dopamine release could produce net reductions in dopamine release under putatively altered tonic dopaminergic conditions that might occur in ADHD and that might explain the beneficial effects of methylphenidate in ADHD. [Pg.1040]

Fig. 8.3 Chemokines are neuromodulators. Some chemokines can be synthesized, as their own receptor, by the same neuron (a). A chemokine released by exocytosis can modulate the electrical activity of neurons after binding to its own presynaptic receptor (autoreceptor). Chemokines can also act on other neurons and glial cells (astrocytes and microgha) which express chemokine receptors (b). (Adapted from Rostene and Melik-Parsadaniantz, Pour la Science 2008, 369 66-72)... Fig. 8.3 Chemokines are neuromodulators. Some chemokines can be synthesized, as their own receptor, by the same neuron (a). A chemokine released by exocytosis can modulate the electrical activity of neurons after binding to its own presynaptic receptor (autoreceptor). Chemokines can also act on other neurons and glial cells (astrocytes and microgha) which express chemokine receptors (b). (Adapted from Rostene and Melik-Parsadaniantz, Pour la Science 2008, 369 66-72)...
Evidence suggests that co-transmitters in a terminal have their own autoreceptors and, in some cases, activation of their own presynaptic receptor can influence the release of the co-stored, classical transmitter. For instance, activation of P2Y-autoreceptors by ATP is thought to affect the release of noradrenaline from sympathetic neurons. However, in other cases, feedback modulation of release of classical and their associated co-transmitters seems to have separate control mechanisms. This would suggest that either the two types of transmitter are concentrated in different nerve terminals or that mechanisms for regulating release target different vesicles located in different zones of the terminal (Burnstock 1990). [Pg.99]

Taking ai-adrenoceptors as an example, several possible mechanisms have been suggested (see Starke 1987). The first rests on evidence that these autoreceptors are coupled to a Gi (like) protein so that binding of an a2-adrenoceptor agonist to the receptor inhibits the activity of adenylyl cyclase. This leads to a fall in the synthesis of the second messenger, cAMP, which is known to be a vital factor in many processes involved in exocytosis. In this way, activation of presynaptic a2-adrenoceptors could well affect processes ranging from the docking of vesicles at the active zone to the actual release process itself... [Pg.99]

Starke, K (1987) Presynaptic a-autoreceptors. Rev. Physiol. Biochem. Pharmacol. 107 73-146. [Pg.102]

It is possible to deplete the brain of both DA and NA by inhibiting tyrosine hydroxylase but while NA may be reduced independently by inhibiting dopamine jS-hydroxylase, the enzyme that converts DA to NA, there is no way of specifically losing DA other than by destruction of its neurons (see below). In contrast, it is easier to augment DA than NA by giving the precursor dopa because of its rapid conversion to DA and the limit imposed on its further synthesis to NA by the restriction of dopamine S-hydroxylase to the vesicles of NA terminals. The activity of the rate-limiting enzyme tyrosine hydroxylase is controlled by the cytoplasmic concentration of DA (normal end-product inhibition), presynaptic dopamine autoreceptors (in addition to their effect on release) and impulse flow, which appears to increase the affinity of tyrosine hydroxylase for its tetrahydropteridine co-factor (see below). [Pg.141]

As with many neurons (e.g. NA) there are presynaptic autoreceptors on the terminals of dopamine neurons whose activation attenuate DA release. Although most of these receptors appear to be of the D2 type, as found postsynaptically, D3 receptors are also found. It is possible that in addition to the short-term control of transmitter release they may also be linked directly to the control of the synthesising enzyme tyrosine hydroxylase. It seems that autoreceptors are more common on the terminals of nerves in the nigrostriatal (and possibly mesolimbic) than mesocortical pathway. [Pg.143]

D2 Mostly in striatum, nucleus accumbens and olfactory tubercle but also on neuron cell bodies in substantia nigra and ventral tegmentum where they are the autoreceptors for locally (dendritic) released DA. The loss of specific D2 antagonist binding in the striatum after lesions of the afferent nigro-striatal tract indicates their presynaptic autoreceptor role on terminals there. Other lesion studies have also established D2 receptors on other inputs such as the cortico striatal tract. [Pg.148]

Starke, K (1987) Presynaptic a-autoreceptors. Rev. Physiol. Biochem. Pharmacol. 107 73-146. Zhong, H and Minneman, KP (1999) i-Adrenoceptor subtypes Eur. J. Pharmacol. 375 261-276. Zigmond, RE, Schwarzschild, MA and Rittenhouse, AR (1989) Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylation. Ann. Rev. Neurosci. 12 451-461. [Pg.186]

Unlike other transmitter systems, there are no obvious meehanisms for dampening glutamate release. Presynaptic autoreceptors for glutamate are mostly of the kainate type (see below) and appear to act as positive rather than negative influenees on further release of the amino acid. Although poorly characterised at present, inhibitory autoreceptors of the metabotropic type of receptors may act to inhibit release of glutamate. [Pg.212]

Increase release. This should follow block of any presynaptic inhibitory autoreceptors. It is not practical at present to increase the vesicular release of a particular NT. [Pg.296]

Reduce release. This is most likely to be achieved by stimulating inhibitory presynaptic autoreceptors (2a). Some drugs may reduce storage (2b) and hence release, although it is unlikely that this can be targeted at just one NT. [Pg.296]

Figure 20.1 Schematic diagram illustrating how antidepressants increase the concentration of extraneuronal neurotransmitter (noradrenaline and/or 5-HT). In the absence of drug (b), monoamine oxidase on the outer membrane of mitochondria metabolises cytoplasmic neurotransmitter and limits its concentration. Also, transmitter released by exocytosis is sequestered from the extracellular space by the membrane-bound transporters which limit the concentration of extraneuronal transmitter. In the presence of a MAO inhibitor (a), the concentration of cytoplasmic transmitter increases, causing a secondary increase in the vesicular pool of transmitter (illustrated by the increase in the size of the vesicle core). As a consequence, exocytotic release of transmitter is increased. Blocking the inhibitory presynaptic autoreceptors would also increase transmitter release, as shown by the absence of this receptor in the figure. In the presence of a neuronal reuptake inhibitor (c), the membrane-bound transporter is inactivated and the clearance of transmitter from the synapse is diminished... Figure 20.1 Schematic diagram illustrating how antidepressants increase the concentration of extraneuronal neurotransmitter (noradrenaline and/or 5-HT). In the absence of drug (b), monoamine oxidase on the outer membrane of mitochondria metabolises cytoplasmic neurotransmitter and limits its concentration. Also, transmitter released by exocytosis is sequestered from the extracellular space by the membrane-bound transporters which limit the concentration of extraneuronal transmitter. In the presence of a MAO inhibitor (a), the concentration of cytoplasmic transmitter increases, causing a secondary increase in the vesicular pool of transmitter (illustrated by the increase in the size of the vesicle core). As a consequence, exocytotic release of transmitter is increased. Blocking the inhibitory presynaptic autoreceptors would also increase transmitter release, as shown by the absence of this receptor in the figure. In the presence of a neuronal reuptake inhibitor (c), the membrane-bound transporter is inactivated and the clearance of transmitter from the synapse is diminished...
A related strategy would be to inactivate the 5-HTib/id autoreceptors which are found on serotonergic nerve terminals and so prevent feedback inhibition of 5-HT release in the terminal field. These drugs would not prevent the impact of indirect activation of 5-HTia receptors, and the reduced neuronal firing, by SSRIs (described above), but they would augment 5-HT release in the terminal field once the presynaptic 5-HTia receptors have desensitised. Selective 5-HTib/id antagonists have been developed only recently but will doubtless soon be tested in humans. [Pg.446]

Histamine produces its pharmacological actions by three subtypes of receptors the postsynaptic Hi and H2 receptors and the presynaptic H3 receptor. The H3 receptor is mainly located in the central nervous system (CNS), where it acts as an inhibitory autoreceptor in the central histaminergic neuronal pathways [176]. A number of therapeutic applications have been proposed for selective H3 receptor antagonists, including several CNS disorders such as Alzheimer s disease. Attention Deficit Hyperactivity Disorder, Schizophrenia, or for enhancing memory or obesity control. [Pg.289]

The activation of presynaptic autoreceptors, as revealed by changes in terminal excitability, suggests that amphetamine releases dopamine at every tested dose. This observation is consistent with recent direct demonstrations using... [Pg.128]

Markstein, R., and Lahaye, D. In vitro effect of the racemic mixture and the (-)enantiomer of N-n-propyl-3(3-hydroxyphenyl)-piperidine (3-PPP) on postsynaptic dopamine receptors and on a presynaptic dopamine autoreceptor. J. Neural Transm 58 43-53, 1983. [Pg.25]

ACh regulates the cortical arousal characteristic of both REM sleep and wakefulness (Semba, 1991, 2000 Sarter Bruno, 1997, 2000). Medial regions of the pontine reticular formation (Figs. 5.2 and 5.7) contribute to regulating both the state of REM sleep and the trait of EEG activation. Within the medial pontine reticular formation, presynaptic cholinergic terminals (Fig. 5.1) that release ACh also are endowed with muscarinic cholinergic receptors (Roth et al, 1996). Autoreceptors are defined as presynaptic receptors that bind the neurotransmitter that is released from the presynaptic terminal (Kalsner, 1990). Autoreceptors provide feedback modulation of transmitter release. Autoreceptor activation... [Pg.121]


See other pages where Presynaptic autoreceptors is mentioned: [Pg.283]    [Pg.698]    [Pg.283]    [Pg.698]    [Pg.140]    [Pg.553]    [Pg.358]    [Pg.912]    [Pg.98]    [Pg.125]    [Pg.126]    [Pg.173]    [Pg.215]    [Pg.242]    [Pg.296]    [Pg.388]    [Pg.414]    [Pg.489]    [Pg.490]    [Pg.493]    [Pg.128]    [Pg.574]    [Pg.32]    [Pg.110]    [Pg.125]    [Pg.125]    [Pg.125]    [Pg.127]   


SEARCH



Autoreceptors

Presynaptic

Presynaptic autoreceptor

© 2024 chempedia.info