Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

DNA carbohydrates

Lipids (see Fig. 1) (1) constitute one of five classes of molecules that can be considered as crucial in biological systems. Together with proteins, nucleotides (DNA), carbohydrates, and water, lipids can be thought of as one of the basic building blocks of living systems. [Pg.2235]

The molecular basis of the a priori druggability hypothesis is derived from the biophysical study of molecular recognition. The binding energy (AG) of a ligand to a molecular target (e.g., protein, RNA, DNA, carbohydrate) is defined in Eq. (1). [Pg.805]

As shown in earlier chapters, there are five bases that will be considered. Their structures are shown in Figure 14.1. All of these, when found in DNA (A, G, C, and T) and RNA (A, G, C, and U), occur attached to their respective (ribose [RNAJor deoxyribose [DNA]) carbohydrate esters of phosphoric acid. These derivatives have also been introduced in Chapter 12 and are discussed further below. [Pg.1323]

Investigations on the interactions of glycosylated nucleotide sequences with proteins and the effective cell-specific delivery of DNA-carbohydrate conjugates... [Pg.124]

The second main area of application results from the high selectivity of DNA-carbohydrate conjugates for cell recognition and increased specific cellular uptake due to stability against nucleases. 5-Neoglycoconjugates have revealed excellent cell-type specificity and cellular uptake in vitro and in vivo [41 5]. For instance, Hangeland et al. [41] demonstrated that the neoglycoconjugate... [Pg.125]

Nucleic acids are acidic substances present m the nuclei of cells and were known long before anyone suspected they were the primary substances involved m the storage transmission and processing of genetic information There are two kinds of nucleic acids ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) Both are complicated biopolymers based on three structural units a carbohydrate a phosphate ester linkage between carbohydrates and a heterocyclic aromatic compound The heterocyclic aro matic compounds are referred to as purine and pyrimidine bases We 11 begin with them and follow the structural thread... [Pg.1155]

The most important derivatives of pyrimidines and purines are nucleosides Nucleosides are N glycosides m which a pyrimidine or purine nitrogen is bonded to the anomeric carbon of a carbohydrate The nucleosides listed m Table 28 2 are the mam building blocks of nucleic acids In RNA the carbohydrate component is d ribofuranose m DNA It IS 2 deoxy d ribofuranose... [Pg.1158]

FIGURE 28 5 (a) Tube and (b) space filling models of a DNA double helix The carbohydrate-phosphate backbone is on the out side and can be roughly traced in (b) by the red oxygen atoms The blue atoms belong to the purine and pyrimidine bases and he on the inside The base pairing is more clearly seen in (a)... [Pg.1170]

Even if It could be shown that RNA preceded both DNA and proteins in the march toward living things that doesn t automatically make RNA the first self replicating molecule Another possibility is that a self replicating polynucleotide based on some carbo hydrate other than o ribose was a precursor to RNA Over many generations natural selection could have led to the replacement of the other carbohydrate by D ribose giving RNA Recent research on unnatural polynucleotides by Professor Albert Eschenmoser of the Swiss Federal Institute of Technology (Zurich) has shown for example that nucleic acids based on L threose possess many of the properties of RNA and DNA... [Pg.1177]

Section 28 7 Nucleic acids are polynucleotides present m cells The carbohydrate component is D nbose m ribonucleic acid (RNA) and 2 deoxy d ribose m deoxyribonucleic acid (DNA)... [Pg.1188]

Section 28 8 The most common form of DNA is B DNA which exists as a right handed double helix The carbohydrate-phosphate backbone lies on the outside the punne and pyrimidine bases on the inside The double helix IS stabilized by complementary hydrogen bonding (base pairing) between adenine (A) and thymine (T) and guanine (G) and cytosine (C)... [Pg.1188]

Heterogeneous reaction (Section 6 1) A reaction involving two or more substances present in different phases Hydro genation of alkenes is a heterogeneous reaction that takes place on the surface of an insoluble metal catalyst Heterolytic cleavage (Section 4 16) Dissociation of a two electron covalent bond in such a way that both electrons are retained by one of the initially bonded atoms Hexose (Section 25 4) A carbohydrate with six carbon atoms High density lipoprotein (HDL) (Section 26 11) A protein that carries cholesterol from the tissues to the liver where it is metabolized HDL is often called good cholesterol Histones (Section 28 9) Proteins that are associated with DNA in nucleosomes... [Pg.1285]

Polyethylene (Section 6 21) A polymer of ethylene Polymer (Section 6 21) Large molecule formed by the repeti tive combination of many smaller molecules (monomers) Polymerase chain reaction (Section 28 16) A laboratory method for making multiple copies of DNA Polymerization (Section 6 21) Process by which a polymer is prepared The principal processes include free radical cationic coordination and condensation polymerization Polypeptide (Section 27 1) A polymer made up of many (more than eight to ten) amino acid residues Polypropylene (Section 6 21) A polymer of propene Polysaccharide (Sections 25 1 and 25 15) A carbohydrate that yields many monosacchande units on hydrolysis Potential energy (Section 2 18) The energy a system has ex elusive of Its kinetic energy... [Pg.1291]

Antineoplastic Drugs. Cyclophosphamide (193) produces antineoplastic effects (see Chemotherapeutics, anticancer) via biochemical conversion to a highly reactive phosphoramide mustard (194) it is chiral owing to the tetrahedral phosphoms atom. The therapeutic index of the (3)-(-)-cyclophosphamide [50-18-0] (193) is twice that of the (+)-enantiomer due to increased antitumor activity the enantiomers are equally toxic (139). The effectiveness of the DNA intercalator dmgs adriamycin [57-22-7] (195) and daunomycin [20830-81-3] (196) is affected by changes in stereochemistry within the aglycon portions of these compounds. Inversion of the carbohydrate C-1 stereocenter provides compounds without activity. The carbohydrate C-4 epimer of adriamycin, epimbicin [56420-45-2] is as potent as its parent molecule, but is significandy less toxic (139). [Pg.261]

One of the important consequences of neuronal stimulation is increased neuronal aerobic metabolism which produces reactive oxygen species (ROS). ROS can oxidize several biomoiecules (carbohydrates, DNA, lipids, and proteins). Thus, even oxygen, which is essential for aerobic life, may be potentially toxic to cells. Addition of one electron to molecular oxygen (O,) generates a free radical [O2)) the superoxide anion. This is converted through activation of an enzyme, superoxide dismurase, to hydrogen peroxide (H-iO,), which is, in turn, the source of the hydroxyl radical (OH). Usually catalase... [Pg.280]

This series in heterocychc chemistry is being introduced to collectively make available critically and comprehensively reviewed hterature scattered in various journals as papers and review articles. All sorts of heterocyclic compounds originating from synthesis, natural products, marine products, insects, etc. will be covered. Several heterocyclic compounds play a significant role in maintaining life. Blood constituents hemoglobin and purines, as well as pyrimidines, are constituents of nucleic acid (DNA and RNA). Several amino acids, carbohydrates, vitamins, alkaloids, antibiotics, etc. are also heterocyclic compounds that are essential for life. Heterocyclic compounds are widely used in clinical practice as drugs, but all applications of heterocyclic medicines can not be discussed in detail. In addition to such applications, heterocyclic compounds also find several applications in the plastics industry, in photography as sensitizers and developers, and the in dye industry as dyes, etc. [Pg.9]


See other pages where DNA carbohydrates is mentioned: [Pg.109]    [Pg.10]    [Pg.283]    [Pg.713]    [Pg.713]    [Pg.392]    [Pg.368]    [Pg.115]    [Pg.124]    [Pg.124]    [Pg.124]    [Pg.125]    [Pg.125]    [Pg.1100]    [Pg.1104]    [Pg.1109]    [Pg.109]    [Pg.10]    [Pg.283]    [Pg.713]    [Pg.713]    [Pg.392]    [Pg.368]    [Pg.115]    [Pg.124]    [Pg.124]    [Pg.124]    [Pg.125]    [Pg.125]    [Pg.1100]    [Pg.1104]    [Pg.1109]    [Pg.37]    [Pg.1168]    [Pg.411]    [Pg.174]    [Pg.200]    [Pg.7]    [Pg.282]    [Pg.1168]    [Pg.328]    [Pg.509]    [Pg.395]    [Pg.14]   
See also in sourсe #XX -- [ Pg.1113 ]




SEARCH



DNA-carbohydrate conjugates

© 2024 chempedia.info